login
A190090
Diagonal sums of the triangular matrix A190088.
3
1, 1, 4, 16, 42, 137, 443, 1365, 4316, 13625, 42785, 134758, 424331, 1335378, 4203927, 13233947, 41657808, 131135696, 412803240, 1299458257, 4090567673, 12876698159, 40534529294, 127598621869, 401667591501, 1264408966284, 3980231826575, 12529367967276, 39441185140197
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-4*k+1,3*n-6*k+1).
G.f.: (1-x-x^4)/(1-2*x-2*x^2-6*x^3+3*x^4-x^6).
a(n) = 2*a(n-1)+ 2*a(n-2)+ 6*a(n-3)-3*a(n-4)+a(n-6), and a(0)=1, a(1)=1, a(2)=4, a(3)=16, a(4)=42, a(5)=137, . - Harvey P. Dale, Jul 04 2011
MATHEMATICA
Table[Sum[Binomial[3n - 4k + 1, 3n - 6k + 1], {k, 0, n/2}], {n, 0, 26}]
LinearRecurrence[{2, 2, 6, -3, 0, 1}, {1, 1, 4, 16, 42, 137}, 27] (* Harvey P. Dale, Jul 04 2011 *)
PROG
(Maxima) makelist(sum(binomial(3*n-4*k+1, 3*n-6*k+1), k, 0, n/2), n, 0, 12);
(PARI) Vec((1-x-x^4)/(1-2*x-2*x^2-6*x^3+3*x^4-x^6)+O(x^29)) \\ Charles R Greathouse IV, Jun 30 2011
(Magma) [(&+[Binomial(3*n-4*k+1, 3*n-6*k+1): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Mar 04 2018
CROSSREFS
Sequence in context: A114211 A188124 A344857 * A227012 A034131 A183536
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, May 04 2011
STATUS
approved