login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188124
Number of strictly increasing arrangements of 5 nonzero numbers in -(n+3)..(n+3) with sum zero.
1
0, 4, 16, 42, 90, 172, 296, 482, 740, 1092, 1554, 2154, 2906, 3846, 4992, 6382, 8038, 10004, 12302, 14984, 18074, 21626, 25670, 30266, 35442, 41266, 47770, 55024, 63064, 71966, 81766, 92548, 104350, 117258, 131316, 146616, 163200, 181168, 200566
OFFSET
0,2
COMMENTS
Row 5 of A188122.
LINKS
R. H. Hardin, Table of n, a(n) for n = 0..200 (corrected by R. H. Hardin, Jan 19 2019)
FORMULA
Empirical: a(n)=2*a(n-1)-a(n-3)-2*a(n-5)+2*a(n-6)+a(n-8)-2*a(n-10)+a(n-11) = 269/1728 +235*n^2/144 +161*n/96 +23*n^4/288 +83*n^3/144 +(-1)^n*(1/64-3*n/32) -2*(-1)^n*A130815(n+2)/27 +A057077(n+1)/8.
Empirical: G.f. -2*x*(2+4*x+5*x^2+5*x^3+4*x^4+x^5+2*x^6) / ( (x^2+1)*(1+x+x^2)*(1+x)^2*(x-1)^5 ). - R. J. Mathar, Mar 21 2011
EXAMPLE
4*x + 16*x^2 + 42*x^3 + 90*x^4 + 172*x^5 + 296*x^6 + 482*x^7 + 740*x^8 + ...
Some solutions for n=6
.-7...-7...-6...-7...-8...-8...-4...-9...-7...-5...-6...-4...-6...-9...-7...-5
.-5...-5...-4...-6...-6...-2...-3...-5...-5...-4...-3...-3...-3...-5...-4...-3
..1....2....2....2....1...-1...-2....1...-4...-2...-2...-2....1....2...-2....1
..5....3....3....5....4....4....4....5....7....4....4....1....2....5....6....3
..6....7....5....6....9....7....5....8....9....7....7....8....6....7....7....4
PROG
(PARI) {a(n) = local(v, c, m); m = n+3; forvec( v = vector( 5, i, [-m, m]), if( 0==prod( k=1, 5, v[k]), next); if( 0==sum( k=1, 5, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
CROSSREFS
Sequence in context: A018828 A323847 A114211 * A344857 A190090 A227012
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 21 2011
STATUS
approved