login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188123
Number of strictly increasing arrangements of 4 nonzero numbers in -(n+2)..(n+2) with sum zero.
1
1, 3, 8, 16, 31, 51, 80, 118, 167, 227, 302, 390, 495, 617, 758, 918, 1101, 1305, 1534, 1788, 2069, 2377, 2716, 3084, 3485, 3919, 4388, 4892, 5435, 6015, 6636, 7298, 8003, 8751, 9546, 10386, 11275, 12213, 13202, 14242, 15337, 16485, 17690, 18952, 20273, 21653
OFFSET
0,2
COMMENTS
Row 4 of A188122.
LINKS
R. H. Hardin, Table of n, a(n) for n = 0..200 (corrected by R. H. Hardin, Jan 19 2019)
FORMULA
Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-4)+2*a(n-6)-a(n-7) = 35/36 +2*n^2/3 +7*n/6 +2*n^3/9 +(-1)^n/4 -2*A049347(n)/9.
Empirical: G.f. -x*(-3-2*x-2*x^3-2*x^5+x^6) / ( (1+x)*(1+x+x^2)*(x-1)^4 ). - R. J. Mathar, Mar 21 2011
Empirical: a(n) = 1/108*(8*sqrt(3)*sin((2*Pi*n)/3) + 3*(2*n*(4*n*(n+3)+21) + 9*i*sin(Pi*n) + 35) - 24*cos((2*Pi*n)/3) + 27*cos(Pi*n)). - Alexander R. Povolotsky, Mar 21 2011
EXAMPLE
Some solutions for n=6
.-6...-7...-8...-8...-5...-7...-6...-6...-7...-5...-8...-4...-5...-7...-7...-4
.-1...-2...-5...-2...-4...-2...-4...-4...-6...-4....1...-3...-2...-6...-3...-3
..3....4....5....2....2....1....4....3....6....4....2....3...-1....5....3....2
..4....5....8....8....7....8....6....7....7....5....5....4....8....8....7....5
a(0) = 1 with unique solution [-2, -1, 1, 2]. - Michael Somos, Apr 11 2011
PROG
(PARI) {a(n) = local(v, c, m); m = n+2; forvec( v = vector( 4, i, [-m, m]), if( 0==prod( k=1, 4, v[k]), next); if( 0==sum( k=1, 4, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
CROSSREFS
Sequence in context: A227265 A295960 A068039 * A081661 A005103 A001978
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 21 2011
STATUS
approved