login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255139
a(n) = n! - Fibonacci(n).
1
1, 0, 1, 4, 21, 115, 712, 5027, 40299, 362846, 3628745, 39916711, 479001456, 6227020567, 87178290823, 1307674367390, 20922789887013, 355687428094403, 6402373705725416, 121645100408827819, 2432902008176633235, 51090942171709429054
OFFSET
0,4
FORMULA
a(n) = A000142(n) - A000045(n).
E.g.f.: 1/(1 - x) - 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Ilya Gutkovskiy, Dec 27 2016
EXAMPLE
For n = 0, a(0) = 0! - F(0) = 1 - 0 = 1.
MAPLE
A255139 := proc(n)
n!-combinat[fibonacci](n) ;
end proc: # R. J. Mathar, Jul 08 2015
MATHEMATICA
Table[n! - Fibonacci[n], {n, 0, 20}]
PROG
(PARI) vector(30, n, n--; n! - fibonacci(n)) \\ Michel Marcus, Jul 05 2015
CROSSREFS
Cf. A000142, A000045, A080568 (the sum instead of the difference).
Sequence in context: A190089 A349300 A240436 * A015554 A024051 A180908
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Jul 03 2015
STATUS
approved