login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146765
Triangle read by rows: expansion of p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n - 1)*Sum[Binomial[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]].
0
1, 1, 1, 1, 10, 1, 1, 27, 27, 1, 1, 68, 102, 68, 1, 1, 165, 330, 330, 165, 1, 1, 390, 975, 1300, 975, 390, 1, 1, 903, 2709, 4515, 4515, 2709, 903, 1, 1, 2056, 7196, 14392, 17990, 14392, 7196, 2056, 1, 1, 4617, 18468, 43092, 64638, 64638, 43092, 18468, 4617, 1, 1
OFFSET
0,5
COMMENTS
Row sums are:{1, 2, 12, 56, 240, 992, 4032, 16256, 65280, 261632, 1047552}.
EXAMPLE
Triangle begins:
{1},
{1, 1},
{1, 10, 1},
{1, 27, 27, 1},
{1, 68, 102, 68, 1},
{1, 165, 330, 330, 165, 1},
{1, 390, 975, 1300, 975, 390, 1},
{1, 903, 2709, 4515, 4515, 2709, 903, 1},
{1, 2056, 7196, 14392, 17990, 14392, 7196, 2056, 1},
{1, 4617, 18468, 43092, 64638, 64638, 43092, 18468, 4617, 1},
{1, 10250, 46125, 123000, 215250, 258300, 215250, 123000, 46125, 10250, 1}
MATHEMATICA
p[x_, n_] = If[ n == 0, 1, (x + 1)^n + 2^(n - 1)*Sum[Binomial[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A113280 A159041 A154979 * A190152 A154984 A173047
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Nov 02 2008
STATUS
approved