login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146763
Rank of terms ending in 0 in A061039.
2
0, 4, 10, 14, 20, 24, 30, 34, 40, 44, 50, 54, 60, 64, 70, 74, 80, 84, 90, 94, 100, 104, 110, 114, 120, 124, 130, 134, 140, 144, 150, 154, 160, 164, 170, 174, 180, 184, 190, 194, 200, 204, 210, 214, 220, 224, 230, 234, 240, 244, 250, 254, 260, 264, 270, 274
OFFSET
0,2
COMMENTS
From Paschen spectrum of hydrogen.
Numbers that are congruent to 0 or 4 mod 10. - Philippe Deléham, Oct 18 2011
FORMULA
a(n) = 10*n - 6 - a(n-1) (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=4 and b(k) = 5*2^k = A020714(k) for k>0. - Philippe Deléham, Oct 18 2011
From Colin Barker, May 14 2012: (Start)
a(n) = (-1 + (-1)^n + 10*n)/2.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(4+6*x)/((1-x)^2*(1+x)). (End)
E.g.f.: 1/2 (exp(-x) - (1 - 10*x)*exp(x)). - G. C. Greubel, Mar 10 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1-2/sqrt(5))*Pi/20 - log(phi)/(4*sqrt(5)) + log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 4}, Mod[#, 10]] &] (* K G Teal, Dec 02 2014 *)
PROG
(Magma) [5*n - (n mod 2): n in [0..60]]; // G. C. Greubel, Mar 10 2022
(Sage) [5*n - (n%2) for n in (0..60)] # G. C. Greubel, Mar 10 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paul Curtz, Nov 02 2008
STATUS
approved