Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Sep 17 2023 10:00:11
%S 0,4,10,14,20,24,30,34,40,44,50,54,60,64,70,74,80,84,90,94,100,104,
%T 110,114,120,124,130,134,140,144,150,154,160,164,170,174,180,184,190,
%U 194,200,204,210,214,220,224,230,234,240,244,250,254,260,264,270,274
%N Rank of terms ending in 0 in A061039.
%C From Paschen spectrum of hydrogen.
%C Numbers that are congruent to 0 or 4 mod 10. - _Philippe Deléham_, Oct 18 2011
%H G. C. Greubel, <a href="/A146763/b146763.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F a(n) = 10*n - 6 - a(n-1) (with a(0)=0). - _Vincenzo Librandi_, Nov 26 2010
%F a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=4 and b(k) = 5*2^k = A020714(k) for k>0. - _Philippe Deléham_, Oct 18 2011
%F From _Colin Barker_, May 14 2012: (Start)
%F a(n) = (-1 + (-1)^n + 10*n)/2.
%F a(n) = a(n-1) + a(n-2) - a(n-3).
%F G.f.: x*(4+6*x)/((1-x)^2*(1+x)). (End)
%F E.g.f.: 1/2 (exp(-x) - (1 - 10*x)*exp(x)). - _G. C. Greubel_, Mar 10 2022
%F Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1-2/sqrt(5))*Pi/20 - log(phi)/(4*sqrt(5)) + log(5)/8, where phi is the golden ratio (A001622). - _Amiram Eldar_, Sep 17 2023
%t Select[Range[0, 100], MemberQ[{0,4}, Mod[#, 10]] &] (* _K G Teal_, Dec 02 2014 *)
%o (Magma) [5*n - (n mod 2): n in [0..60]]; // _G. C. Greubel_, Mar 10 2022
%o (Sage) [5*n - (n%2) for n in (0..60)] # _G. C. Greubel_, Mar 10 2022
%Y Cf. A001622, A020714, A030308, A061039.
%K nonn,base,easy
%O 0,2
%A _Paul Curtz_, Nov 02 2008