login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146767
Triangle read by rows: expansion of p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n - 3)*Sum[Binomial[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]].
0
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 20, 30, 20, 1, 1, 45, 90, 90, 45, 1, 1, 102, 255, 340, 255, 102, 1, 1, 231, 693, 1155, 1155, 693, 231, 1, 1, 520, 1820, 3640, 4550, 3640, 1820, 520, 1, 1, 1161, 4644, 10836, 16254, 16254, 10836, 4644, 1161, 1, 1, 2570, 11565, 30840, 53970
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 6, 20, 72, 272, 1056, 4160, 16512, 65792, 262656}.
EXAMPLE
Triangle begins:
{1},
{1, 1},
{1, 4, 1},
{1, 9, 9, 1},
{1, 20, 30, 20, 1},
{1, 45, 90, 90, 45, 1},
{1, 102, 255, 340, 255, 102, 1},
{1, 231, 693, 1155, 1155, 693, 231, 1},
{1, 520, 1820, 3640, 4550, 3640, 1820, 520, 1},
{1, 1161, 4644, 10836, 16254, 16254, 10836, 4644, 1161, 1},
{1, 2570, 11565, 30840, 53970, 64764, 53970, 30840, 11565, 2570, 1}
MATHEMATICA
p[x_, n_] = If[ n == 0, 1, (x + 1)^n + 2^(n - 3)*Sum[Binomial[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A157192 A154982 A347972 * A146955 A155451 A220681
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Nov 02 2008
STATUS
approved