login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157192
Triangle T(n, k) = 2^(n+k-2)*prime(k) + (n mod 2) if k <= floor(n/2) otherwise 2^(2*n-k-2)*prime(n-k) + (n mod 2), with T(n, 0) = T(n, n) = 1, read by rows.
1
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 48, 16, 1, 1, 33, 97, 97, 33, 1, 1, 64, 192, 640, 192, 64, 1, 1, 129, 385, 1281, 1281, 385, 129, 1, 1, 256, 768, 2560, 7168, 2560, 768, 256, 1, 1, 513, 1537, 5121, 14337, 14337, 5121, 1537, 513, 1, 1, 1024, 3072, 10240, 28672, 90112, 28672, 10240, 3072, 1024, 1
OFFSET
0,5
FORMULA
T(n, k) = 2^(n+k-2)*prime(k) + (n mod 2) if k <= floor(n/2) otherwise 2^(2*n-k-2)*prime(n-k) + (n mod 2), with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 9, 9, 1;
1, 16, 48, 16, 1;
1, 33, 97, 97, 33, 1;
1, 64, 192, 640, 192, 64, 1;
1, 129, 385, 1281, 1281, 385, 129, 1;
1, 256, 768, 2560, 7168, 2560, 768, 256, 1;
1, 513, 1537, 5121, 14337, 14337, 5121, 1537, 513, 1;
1, 1024, 3072, 10240, 28672, 90112, 28672, 10240, 3072, 1024, 1;
MATHEMATICA
f[n_, k_]:= Prime[k]*2^(n+k-2) + Mod[n, 2];
T[n_, k_]:= If[k==0 || k==n, 1, If[k<=Floor[n/2], f[n, k], f[n, n-k] ]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
PROG
(Sage)
def f(n, k): return 2^(n+k-2)*nth_prime(k) + (n%2)
def T(n, k):
if (k==0 or k==n): return 1
elif (k <= n//2): return f(n, k)
else: return f(n, n-k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 09 2022
CROSSREFS
Sequence in context: A008459 A259333 A180960 * A154982 A347972 A146767
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 24 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 09 2022
STATUS
approved