login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361279
Expansion of e.g.f. exp(x * (1+x)^3).
8
1, 1, 7, 37, 241, 1981, 17551, 171697, 1860097, 21609721, 268697431, 3566446621, 50060084977, 740156116597, 11496472967071, 186824483634601, 3167058238988161, 55882288483846897, 1023891003620741287, 19440027237549627541, 381822392009503555441
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} binomial(3*k,n-k)/k!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * binomial(3,k-1) * a(n-k)/(n-k)!.
D-finite with recurrence a(n) -a(n-1) +6*(-n+1)*a(n-2) -9*(n-1)*(n-2)*a(n-3) -4*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Mar 13 2023
a(n) ~ 2^(n/2 - 1) * n^(3*n/4) / exp(3*n/4 - 3*n^(3/4)/2^(3/2) - 15*n^(1/2)/64 + n^(1/4)/2^(19/2) + 27/1024) * (1 + 724053*sqrt(2)/(2621440*n^(1/4))). - Vaclav Kotesovec, Nov 11 2023
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1+x)^3)))
(PARI) a(n) = n!*sum(k=0, n, binomial(3*k, n-k)/k!);
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, j*binomial(3, j-1)*v[i-j+1]/(i-j)!)); v;
CROSSREFS
Column k=3 of A361277.
Cf. A091695.
Sequence in context: A285846 A102760 A332906 * A096965 A159597 A217723
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 06 2023
STATUS
approved