login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096965
Number of sets of even number of even lists, cf. A000262.
3
1, 1, 1, 7, 37, 241, 2101, 18271, 201097, 2270017, 29668681, 410815351, 6238931821, 101560835377, 1765092183037, 32838929702671, 644215775792401, 13441862819232001, 293976795292186897, 6788407001443004647, 163735077313046119861, 4142654439686285737201
OFFSET
0,4
LINKS
FORMULA
E.g.f.: exp(x/(1-x^2))*cosh(x^2/(1-x^2)).
a(n) = (n!*sum(m=floor((n+1)/2)..n, (binomial(n-1,2*m-n-1))/(2*m-n)!)). - Vladimir Kruchinin, Mar 10 2013
Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
From Alois P. Heinz, Dec 01 2021: (Start)
a(n) = A000262(n) - A096939(n).
a(n) = |Sum_{k=0..n} (-1)^k * A349776(n,k)|. (End)
MAPLE
a:= proc(n) option remember; `if`(n<4, [1$3, 7][n+1], ((2*n-3)
*a(n-1)+(n-1)*(2*n^2-8*n+7)*a(n-2) + (n-2)*(n-1)*(2*n-5)
*a(n-3)-(n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4))/(n-2))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 01 2021
MATHEMATICA
Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))]Cosh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* Robert G. Wilson v, Aug 19 2004 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 18 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 19 2004
a(0)=1 prepended by Alois P. Heinz, Dec 01 2021
STATUS
approved