login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of sets of even number of even lists, cf. A000262.
3

%I #27 Dec 01 2021 10:54:55

%S 1,1,1,7,37,241,2101,18271,201097,2270017,29668681,410815351,

%T 6238931821,101560835377,1765092183037,32838929702671,644215775792401,

%U 13441862819232001,293976795292186897,6788407001443004647,163735077313046119861,4142654439686285737201

%N Number of sets of even number of even lists, cf. A000262.

%H Vincenzo Librandi, <a href="/A096965/b096965.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f.: exp(x/(1-x^2))*cosh(x^2/(1-x^2)).

%F a(n) = (n!*sum(m=floor((n+1)/2)..n, (binomial(n-1,2*m-n-1))/(2*m-n)!)). - _Vladimir Kruchinin_, Mar 10 2013

%F Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - _Vaclav Kotesovec_, Sep 29 2013

%F a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - _Vaclav Kotesovec_, Sep 29 2013

%F From _Alois P. Heinz_, Dec 01 2021: (Start)

%F a(n) = A000262(n) - A096939(n).

%F a(n) = |Sum_{k=0..n} (-1)^k * A349776(n,k)|. (End)

%p a:= proc(n) option remember; `if`(n<4, [1$3, 7][n+1], ((2*n-3)

%p *a(n-1)+(n-1)*(2*n^2-8*n+7)*a(n-2) + (n-2)*(n-1)*(2*n-5)

%p *a(n-3)-(n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4))/(n-2))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 01 2021

%t Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))]Cosh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* _Robert G. Wilson v_, Aug 19 2004 *)

%Y Cf. A000262, A088026, A088009, A096939, A349776.

%K easy,nonn

%O 0,4

%A _Vladeta Jovovic_, Aug 18 2004

%E More terms from _Robert G. Wilson v_, Aug 19 2004

%E a(0)=1 prepended by _Alois P. Heinz_, Dec 01 2021