login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373746
Triangle read by rows: the almost-Riordan array ( 1/(1-x) | 2/((1-x)*(1+x+sqrt(5*x^2-6*x+1))), (1-3*x-sqrt(5*x^2-6*x+1))/(2x) ).
0
1, 1, 1, 1, 2, 1, 1, 4, 5, 1, 1, 10, 20, 8, 1, 1, 31, 78, 45, 11, 1, 1, 110, 310, 224, 79, 14, 1, 1, 421, 1264, 1061, 475, 122, 17, 1, 1, 1686, 5274, 4922, 2608, 858, 174, 20, 1, 1, 6961, 22430, 22648, 13604, 5356, 1400, 235, 23, 1, 1, 29392, 96899, 103978, 68816, 31072, 9791, 2128, 305, 26, 1
OFFSET
0,5
COMMENTS
In He and Słowik, there is a typing error since T(5,1) is equal to 31 and not to 421.
LINKS
Tian-Xiao He and Roksana Słowik, Total Positivity of Almost-Riordan Arrays, arXiv:2406.03774 [math.CO], 2024. See p. 19.
FORMULA
T(n,n-1) = A016789(n-2).
EXAMPLE
The triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 5, 1;
1, 10, 20, 8, 1;
1, 31, 78, 45, 11, 1;
1, 110, 310, 224, 79, 14, 1;
...
MATHEMATICA
T[n_, 0]:=1; T[n_, k_]:=SeriesCoefficient[2/((1-x)(1+x+Sqrt[5x^2-6x+1]))((1-3x-Sqrt[5x^2-6x+1])/(2x))^(k-1), {x, 0, n-1}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A000012 (k=0 and n=k), A016789, A138415 (k=1).
Sequence in context: A339285 A363043 A192404 * A291261 A294206 A332402
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Jun 16 2024
STATUS
approved