login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339285
Triangle read by rows: T(n,k) is the number of unoriented series-parallel networks whose multigraph has n edges and k interior vertices, 0 <= k < n.
2
1, 1, 1, 1, 2, 1, 1, 4, 5, 1, 1, 6, 14, 8, 1, 1, 9, 34, 39, 14, 1, 1, 12, 68, 132, 94, 20, 1, 1, 16, 126, 370, 447, 202, 30, 1, 1, 20, 212, 887, 1625, 1275, 398, 40, 1, 1, 25, 340, 1911, 4955, 5985, 3284, 730, 55, 1, 1, 30, 515, 3765, 13133, 22608, 19245, 7649, 1266, 70, 1
OFFSET
1,5
COMMENTS
Unoriented version of A339231. Equivalence is up to reversal of all parts combined in series.
FORMULA
T(n,0) = T(n,n-1) = 1.
T(n,1) = A002620(n).
A339286(n) = Sum_{k=1..n-1} k*T(n,k).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 5, 1;
1, 6, 14, 8, 1;
1, 9, 34, 39, 14, 1;
1, 12, 68, 132, 94, 20, 1;
1, 16, 126, 370, 447, 202, 30, 1;
1, 20, 212, 887, 1625, 1275, 398, 40, 1;
1, 25, 340, 1911, 4955, 5985, 3284, 730, 55, 1;
...
T(4,0) = 1: (o|o|o|o).
T(4,1) = 4: ((o|o)(o|o)), (o(o|o|o)), (o|o|oo), (o|o(o|o)).
T(4,2) = 5: (oo(o|o)), (o(o|o)o), (o(o|oo)), (oo|oo), (o|ooo).
T(4,3) = 1: (oooo).
PROG
(PARI)
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, [v^i|v<-vars])/i ))-1)}
SubPwr(p, e)={my(vars=variables(p)); substvec(p, vars, [v^e|v<-vars])}
BW(n, Z, W)={my(p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerMT(Vec(W*p^2/(1+W*p)+Z)))); p}
VertexWeighted(n, Z, W)={my(q=SubPwr(BW((n+1)\2, Z, W), 2), W2=SubPwr(W, 2), s=SubPwr(Z, 2)+W2*q^2/(1+W2*q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(W + W2*p); p=Z + x*Ser(EulerMT(Vec(t+(s-SubPwr(t, 2))/2))) - t); Vec(p+t-Z+BW(n, Z, W))/2}
T(n)={[Vecrev(p)|p<-VertexWeighted(n, x, y)]}
{ my(A=T(12)); for(n=1, #A, print(A[n])) }
CROSSREFS
Row sums are A339225.
Sequence in context: A197380 A057785 A305882 * A363043 A192404 A373746
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Nov 30 2020
STATUS
approved