Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Nov 30 2020 21:40:32
%S 1,1,1,1,2,1,1,4,5,1,1,6,14,8,1,1,9,34,39,14,1,1,12,68,132,94,20,1,1,
%T 16,126,370,447,202,30,1,1,20,212,887,1625,1275,398,40,1,1,25,340,
%U 1911,4955,5985,3284,730,55,1,1,30,515,3765,13133,22608,19245,7649,1266,70,1
%N Triangle read by rows: T(n,k) is the number of unoriented series-parallel networks whose multigraph has n edges and k interior vertices, 0 <= k < n.
%C Unoriented version of A339231. Equivalence is up to reversal of all parts combined in series.
%F T(n,0) = T(n,n-1) = 1.
%F T(n,1) = A002620(n).
%F A339286(n) = Sum_{k=1..n-1} k*T(n,k).
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 4, 5, 1;
%e 1, 6, 14, 8, 1;
%e 1, 9, 34, 39, 14, 1;
%e 1, 12, 68, 132, 94, 20, 1;
%e 1, 16, 126, 370, 447, 202, 30, 1;
%e 1, 20, 212, 887, 1625, 1275, 398, 40, 1;
%e 1, 25, 340, 1911, 4955, 5985, 3284, 730, 55, 1;
%e ...
%e T(4,0) = 1: (o|o|o|o).
%e T(4,1) = 4: ((o|o)(o|o)), (o(o|o|o)), (o|o|oo), (o|o(o|o)).
%e T(4,2) = 5: (oo(o|o)), (o(o|o)o), (o(o|oo)), (oo|oo), (o|ooo).
%e T(4,3) = 1: (oooo).
%o (PARI)
%o EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, [v^i|v<-vars])/i ))-1)}
%o SubPwr(p,e)={my(vars=variables(p)); substvec(p, vars, [v^e|v<-vars])}
%o BW(n, Z, W)={my(p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerMT(Vec(W*p^2/(1+W*p)+Z)))); p}
%o VertexWeighted(n, Z, W)={my(q=SubPwr(BW((n+1)\2, Z, W), 2), W2=SubPwr(W, 2), s=SubPwr(Z, 2)+W2*q^2/(1+W2*q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(W + W2*p); p=Z + x*Ser(EulerMT(Vec(t+(s-SubPwr(t, 2))/2))) - t); Vec(p+t-Z+BW(n, Z, W))/2}
%o T(n)={[Vecrev(p)|p<-VertexWeighted(n, x, y)]}
%o { my(A=T(12)); for(n=1, #A, print(A[n])) }
%Y Row sums are A339225.
%Y Cf. A002620, A339231, A339282, A339286.
%K nonn,tabl
%O 1,5
%A _Andrew Howroyd_, Nov 30 2020