Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 04 2022 10:36:37
%S 1,1,6,46,456,5656,84336,1467376,29175936,652606336,16219458816,
%T 443419545856,13224580002816,427278468668416,14867050125981696,
%U 554245056343668736,22039796215883268096,931198483176870608896,41658202699736550014976,1967160945260218035798016
%N a(n) = A_{5}(n) where A_{m}(x) are the Eulerian polynomials as defined in A326323.
%C See A326323 for the more general formulas.
%F a(n) ~ n!/5 * (4/log(5))^(n+1). - _Vaclav Kotesovec_, Aug 09 2021
%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * 4^(k-1) * a(n-k). - _Ilya Gutkovskiy_, Feb 04 2022
%p seq(add(combinat:-eulerian1(n,k)*5^k, k=0..n), n=0..20);
%p # Alternative:
%p egf := 4/(5 - exp(4*x)): ser := series(egf, x, 21):
%p seq(k!*coeff(ser, x, k), k=0..20);
%t a[1] := 1; a[n_] := 4^(n + 1)/5 HurwitzLerchPhi[1/5, -n, 0];
%t Table[a[n], {n, 0, 20}]
%t (* Alternative: *)
%t s[n_] := Sum[StirlingS2[n, j] 4^(n - j) j!, {j, 0, n}];
%t Table[s[n], {n, 0, 20}]
%Y Cf. A173018, A000012, A000142, A000670, A122704, A255927, A326323.
%K nonn
%O 0,3
%A _Peter Luschny_, Jun 27 2019
%E Corrected after notice from _Jean-François Alcover_ by _Peter Luschny_, Jul 13 2019