login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215079
Triangle T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k)
2
1, 0, 1, 0, 3, 4, 0, 7, 32, 27, 0, 15, 176, 405, 256, 0, 31, 832, 3888, 6144, 3125, 0, 63, 3648, 30618, 90112, 109375, 46656, 0, 127, 15360, 216513, 1048576, 2265625, 2239488, 823543, 0, 255, 63232, 1436859, 10682368, 36328125, 62145792, 51883209, 16777216, 0, 511, 257024, 9172278, 100139008, 500000000, 1310100480, 1856265922, 1342177280, 387420489, 0, 1023, 1037312, 57159432, 889192448, 6230468750, 23339943936, 49715643824, 60129542144, 38354628411, 10000000000
OFFSET
0,5
COMMENTS
Initial term T(0,0) may be computed as 0, depending on formula and convention.
LINKS
FORMULA
T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k) = k^n * A055248(n,k-1).
T(n,k) = k^n * binomial(n,n-k) * 2F1(1, k-n; k+1)(-1)
T(n,1) = A000225(n). - R. J. Mathar, Feb 08 2021
EXAMPLE
1
0 1
0 3 4
0 7 32 27
0 15 176 405 256
0 31 832 3888 6144 3125
0 63 3648 30618 90112 109375 46656
0 127 15360 216513 1048576 2265625 2239488 823543
MAPLE
A215079 := proc(n, k)
k^n*add( binomial(n, n-k-j), j=0..n-k) ;
end proc: # R. J. Mathar, Feb 08 2021
MATHEMATICA
Flatten[Table[Table[Sum[k^n*Binomial[n, n - k - j], {j, 0, n - k}], {k, 0, n}], {n, 0, 10}], 1]
CROSSREFS
Row sums sequence is A215077.
Product of A055248 and A089072 (with an initial 0 in each row).
Cf. A000225 (column k=1), A000312 (diagonal).
Sequence in context: A276563 A011338 A214024 * A049251 A308642 A158674
KEYWORD
nonn,tabl
AUTHOR
Olivier Gérard, Aug 02 2012
STATUS
approved