Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 08 2021 07:48:30
%S 1,0,1,0,3,4,0,7,32,27,0,15,176,405,256,0,31,832,3888,6144,3125,0,63,
%T 3648,30618,90112,109375,46656,0,127,15360,216513,1048576,2265625,
%U 2239488,823543,0,255,63232,1436859,10682368,36328125,62145792,51883209,16777216,0,511,257024,9172278,100139008,500000000,1310100480,1856265922,1342177280,387420489,0,1023,1037312,57159432,889192448,6230468750,23339943936,49715643824,60129542144,38354628411,10000000000
%N Triangle T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k)
%C Initial term T(0,0) may be computed as 0, depending on formula and convention.
%H Vincenzo Librandi, <a href="/A215079/b215079.txt">Table of n, a(n) for n = 0..1000</a>
%F T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k) = k^n * A055248(n,k-1).
%F T(n,k) = k^n * binomial(n,n-k) * 2F1(1, k-n; k+1)(-1)
%F T(n,1) = A000225(n). - _R. J. Mathar_, Feb 08 2021
%e 1
%e 0 1
%e 0 3 4
%e 0 7 32 27
%e 0 15 176 405 256
%e 0 31 832 3888 6144 3125
%e 0 63 3648 30618 90112 109375 46656
%e 0 127 15360 216513 1048576 2265625 2239488 823543
%p A215079 := proc(n,k)
%p k^n*add( binomial(n,n-k-j),j=0..n-k) ;
%p end proc: # _R. J. Mathar_, Feb 08 2021
%t Flatten[Table[Table[Sum[k^n*Binomial[n, n - k - j], {j, 0, n - k}], {k, 0, n}], {n, 0, 10}], 1]
%Y Row sums sequence is A215077.
%Y Product of A055248 and A089072 (with an initial 0 in each row).
%Y Cf. A000225 (column k=1), A000312 (diagonal).
%K nonn,tabl
%O 0,5
%A _Olivier Gérard_, Aug 02 2012