login
Number of n-length words w over a 9-ary alphabet {a1,a2,...,a9} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a9) >= 0, where #(w,x) counts the letters x in word w.
4

%I #13 Sep 21 2017 11:33:02

%S 1,1,3,10,47,246,1602,11481,95503,871030,5250758,38454351,273492122,

%T 2051148347,15736849481,125536061475,1041102777023,8537848507142,

%U 74739775725270,569218702884915,4674633861692302,37899687815748825,312237339834676391,2586068757754063445

%N Number of n-length words w over a 9-ary alphabet {a1,a2,...,a9} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a9) >= 0, where #(w,x) counts the letters x in word w.

%H Alois P. Heinz, <a href="/A226879/b226879.txt">Table of n, a(n) for n = 0..1000</a>

%p b:= proc(n, i, t) option remember;

%p `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))

%p end:

%p a:= n-> n!*b(n, 0, 9):

%p seq(a(n), n=0..30);

%Y Column k=9 of A226873.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jun 21 2013