login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A254845
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the medians of the diagonal and antidiagonal minus the two sums of the central row and column nondecreasing horizontally and vertically
9
512, 2485, 2485, 8776, 10550, 8776, 30182, 37642, 37642, 30182, 99200, 117706, 131776, 117706, 99200, 293012, 298165, 340387, 340387, 298165, 293012, 794128, 645882, 638688, 701614, 638688, 645882, 794128, 2084773, 1323795, 1102937
OFFSET
1,1
COMMENTS
Table starts
......512....2485....8776....30182....99200...293012....794128...2084773
.....2485...10550...37642...117706...298165...645882...1323795...2679351
.....8776...37642..131776...340387...638688..1102937...1795490...2870508
....30182..117706..340387...701614..1308339..2339906...3986282...6690291
....99200..298165..638688..1308339..2423232..4446577...7695684..12905204
...293012..645882.1102937..2339906..4446577..8565304..15676281..28139328
...794128.1323795.1795490..3986282..7695684.15676281..29838772..55992976
..2084773.2679351.2870508..6690291.12905204.28139328..55992976.111752868
..5392400.5270801.4430116.10891568.20980412.48596429.100413564.211156264
.13573624.9822005.6683904.17356772.33267336.82388048.176175692.391428238
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 36] for n>41
k=2: [order 72] for n>85
k=3: [order 28] for n>47
k=4: [order 29] for n>53
k=5: [order 16] for n>43
k=6: [order 22] for n>54
k=7: [order 18] for n>53
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1..0..0....0..1..0..0..0..0....0..0..0..0..0..0....0..1..0..0..0..0
..0..1..1..0..0..1....1..0..0..1..1..0....1..1..0..0..1..1....1..1..1..1..1..0
..0..1..1..0..0..0....0..1..1..0..0..1....0..0..1..1..0..0....0..1..1..0..0..1
..0..1..0..0..0..0....0..1..0..0..0..0....1..0..0..0..0..0....1..1..0..0..0..1
..0..1..0..0..0..0....0..0..0..1..0..0....0..1..1..0..0..0....1..0..1..1..0..0
CROSSREFS
Sequence in context: A256904 A256897 A255756 * A254838 A257784 A254020
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 08 2015
STATUS
approved