login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254847
Number of (n+2) X (1+2) 0..1 arrays with no 3 x 3 subblock diagonal sum one and no antidiagonal sum two.
1
192, 576, 1632, 4624, 13328, 38416, 110544, 318096, 913680, 2624400, 7549200, 21715600, 62425360, 179452816, 515960336, 1483482256, 4265261840, 12263347600, 35258287120, 101370918544, 291456195856, 837979129744, 2409294812688
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 8*a(n-3) + 12*a(n-4) + 20*a(n-5) + 32*a(n-6) - 64*a(n-8) - 64*a(n-9)
Empirical g.f.: 16*x*(12 + 24*x + 66*x^2 + 91*x^3 + 112*x^4 + 80*x^5 - 132*x^6 - 352*x^7 - 256*x^8) / ((1 + 2*x^2 - 4*x^3)*(1 + 2*x^2 + 4*x^3)*(1 - x - 4*x^2 - 4*x^3)). - Colin Barker, Dec 18 2018
EXAMPLE
Some solutions for n=4:
..0..0..0....1..1..0....0..1..0....1..1..1....0..1..0....1..0..0....1..0..1
..1..1..1....1..0..1....0..0..1....0..0..1....0..0..1....1..1..1....0..1..0
..0..1..1....1..1..1....0..1..0....0..1..1....0..0..0....0..0..1....1..0..1
..1..1..1....1..1..1....1..0..1....1..0..1....0..0..0....0..0..1....0..1..0
..1..0..1....1..1..0....0..1..0....0..1..0....0..1..0....0..0..0....1..0..0
..0..0..1....1..1..1....1..1..0....1..1..0....0..1..1....0..0..0....0..0..0
CROSSREFS
Column 1 of A254854.
Sequence in context: A229361 A232940 A254854 * A251083 A336944 A194647
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 08 2015
STATUS
approved