login
A254854
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum one and no antidiagonal sum two
9
192, 576, 576, 1632, 1369, 1632, 4624, 2916, 2916, 4624, 13328, 6889, 5904, 6889, 13328, 38416, 16900, 13456, 13456, 16900, 38416, 110544, 42436, 34176, 37636, 34176, 42436, 110544, 318096, 103684, 87616, 99856, 99856, 87616, 103684, 318096
OFFSET
1,1
COMMENTS
Table starts
.....192.....576....1632.....4624....13328.....38416.....110544......318096
.....576....1369....2916.....6889....16900.....42436.....103684......250000
....1632....2916....5904....13456....34176.....87616.....216000......518400
....4624....6889...13456....37636....99856....271441.....729316.....1996569
...13328...16900...34176....99856...296800....902500....2811104.....8773444
...38416...42436...87616...271441...902500...3316041...12013156....42016324
..110544..103684..216000...729316..2811104..12013156...50676440...192820996
..318096..250000..518400..1996569..8773444..42016324..192820996...827137600
..913680..595984.1246464..5466244.26777920.136936804..677038812..3207636496
.2624400.1447209.3069504.15202201.80389156.443439364.2389645456.12899507776
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +8*a(n-3) +12*a(n-4) +20*a(n-5) +32*a(n-6) -64*a(n-8) -64*a(n-9)
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1..0..1....0..1..0..0..1..1....0..1..0..1..0..1....0..1..0..1..1..1
..0..0..1..0..1..1....1..0..0..0..1..1....1..0..1..0..0..1....0..0..1..0..1..0
..1..1..0..1..0..0....0..1..0..1..0..1....1..1..0..0..0..1....0..1..0..1..0..0
..1..0..1..0..1..0....0..0..1..0..1..0....1..0..0..0..1..0....1..0..1..0..1..0
..0..1..1..0..0..1....1..1..0..1..0..0....0..1..1..1..0..1....0..1..0..0..0..0
..1..0..0..1..1..0....1..0..1..0..1..0....0..0..1..1..1..0....1..1..0..0..1..0
CROSSREFS
Sequence in context: A189987 A229361 A232940 * A254847 A251083 A336944
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 08 2015
STATUS
approved