OFFSET
1,1
COMMENTS
Table starts
......512....2485...8776...30182..99200..293012..794128.2084773.5392400
.....2485....7765..24536...72884.180619..386060..778827.1580226.3130455
.....8776...20730..51064..111064.197284..341801..551068..880000.1327924
....30182...46367..71651..118925.203503..371616..619142.1072628.1797116
....99200...86062..81494..124928.196744..360501..553072..962648.1560352
...293012..156658.108201..177281.237248..473630..652833.1289436.2035202
...794128..290525.145536..306248.300504..733081..739776.1603012.1998480
..2084773..531182.211742..517386.402972.1166662.1010588.2509233.2982542
..5392400..940860.299128..766616.543216.1720217.1167904.3479884.2833848
.13573624.1668674.414453.1335701.719217.3169356.1647077.6485710.4686897
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..1198
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 36] for n>41
k=2: [order 44] for n>53
k=3: a(n) = 2*a(n-1) -a(n-2) +4*a(n-4) -8*a(n-5) +4*a(n-6) for n>18
k=4: [order 14] for n>26
k=5: a(n) = 2*a(n-1) -a(n-2) +4*a(n-4) -8*a(n-5) +4*a(n-6) for n>18
k=6: [same order 14] for n>28
k=7: a(n) = 2*a(n-1) -a(n-2) +4*a(n-4) -8*a(n-5) +4*a(n-6) for n>20
Empirical for row n:
n=1: [linear recurrence of order 36] for n>41
n=2: [order 72] for n>85
n=3: [order 28] for n>47
n=4: [order 29] for n>53
n=5: [order 16] for n>43
n=6: [order 22] for n>54
n=7: [order 18] for n>53
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..1..1..0....1..1..0..0..1..0....0..1..1..1..1..1....1..1..1..0..0..1
..1..1..1..1..1..1....0..1..1..1..0..1....1..1..1..1..1..1....1..1..1..1..0..0
..1..1..1..1..1..1....0..1..1..1..0..0....1..1..1..1..1..1....1..1..0..0..1..0
..1..1..1..1..0..0....0..0..0..0..0..0....1..1..1..1..1..0....0..1..1..0..0..0
..1..0..0..0..0..1....0..0..0..0..0..0....1..1..1..1..0..0....1..0..0..0..0..0
..0..0..0..0..0..0....0..0..0..0..0..1....1..1..1..0..0..1....1..1..1..1..0..1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 05 2015
STATUS
approved