login
A259006
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14
512, 2444, 2444, 9374, 6271, 9374, 34698, 18341, 21073, 34698, 113474, 50654, 55760, 59549, 113474, 330684, 131557, 159480, 116098, 130296, 330684, 914320, 317141, 397152, 225215, 142316, 263417, 914320, 2433544, 701282, 915452, 402742, 177118
OFFSET
1,1
COMMENTS
Table starts
......512....2444...9374..34698.113474.330684..914320.2433544.6176662.15093057
.....2444....6271..18341..50654.131557.317141..701282.1467387.2896645..5442921
.....9374...21073..55760.159480.397152.915452.2005182.4136140.8078000.15207697
....34698...59549.116098.225215.402742.780329.1284465.2218382.3724801..6307988
...113474..130296.142316.177118.219424.321144..431280..628483..873376..1362527
...330684..263417.191035.174655.210946.292814..390714..533771..758616..1186813
...914320..459014.134036..49839..35404..49717...73734..133352..251774...493203
..2433544..746902.138255..44035..30072..42876...61001..112980..214950...418576
..6176662.1157855.135282..31798..23070..35111...59336..109259..204210...388170
.15093057.1747626.125066..31346..28125..36146...60827..109221..200940...373950
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 68] for n>70
k=2: [order 46] for n>60
k=3: [order 22] for n>36
k=4: a(n) = 2*a(n-1) -a(n-2) +a(n-12) -2*a(n-13) +a(n-14) for n>27
k=5: a(n) = a(n-1) +a(n-12) -a(n-13) for n>23
k=6: a(n) = a(n-1) +a(n-12) -a(n-13) for n>24
k=7: a(n) = a(n-1) +a(n-12) -a(n-13) for n>25
Empirical quasipolynomials for column k:
k=3: quasipolynomial of degree 2 with period 60 for n>14
k=4: polynomial of degree 2 plus a quasipolynomial of degree 0 with period 12 for n>13
k=5: polynomial of degree 1 plus a quasipolynomial of degree 0 with period 12 for n>10
k=6: polynomial of degree 1 plus a quasipolynomial of degree 0 with period 12 for n>11
k=7: polynomial of degree 1 plus a quasipolynomial of degree 0 with period 12 for n>12
Empirical for row n:
n=1: [linear recurrence of order 68] for n>70
n=2: [order 64] for n>82
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1..1..1....1..1..0..1..0..0....0..0..0..1..0..0....0..1..0..0..1..0
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....1..0..0..0..0..1
..0..1..1..1..1..1....0..0..1..0..1..1....0..0..0..0..1..0....1..1..1..1..1..1
..0..1..0..1..1..0....1..0..1..0..1..0....0..1..1..1..1..0....0..1..0..1..1..0
..0..1..1..1..0..1....1..1..1..1..1..0....1..0..0..1..1..1....0..1..1..1..0..1
CROSSREFS
Column 1 and row 1 are A256897
Sequence in context: A253841 A253935 A253834 * A256904 A256897 A255756
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 16 2015
STATUS
approved