login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14

%I #4 Jun 16 2015 10:34:22

%S 512,2444,2444,9374,6271,9374,34698,18341,21073,34698,113474,50654,

%T 55760,59549,113474,330684,131557,159480,116098,130296,330684,914320,

%U 317141,397152,225215,142316,263417,914320,2433544,701282,915452,402742,177118

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Table starts

%C ......512....2444...9374..34698.113474.330684..914320.2433544.6176662.15093057

%C .....2444....6271..18341..50654.131557.317141..701282.1467387.2896645..5442921

%C .....9374...21073..55760.159480.397152.915452.2005182.4136140.8078000.15207697

%C ....34698...59549.116098.225215.402742.780329.1284465.2218382.3724801..6307988

%C ...113474..130296.142316.177118.219424.321144..431280..628483..873376..1362527

%C ...330684..263417.191035.174655.210946.292814..390714..533771..758616..1186813

%C ...914320..459014.134036..49839..35404..49717...73734..133352..251774...493203

%C ..2433544..746902.138255..44035..30072..42876...61001..112980..214950...418576

%C ..6176662.1157855.135282..31798..23070..35111...59336..109259..204210...388170

%C .15093057.1747626.125066..31346..28125..36146...60827..109221..200940...373950

%H R. H. Hardin, <a href="/A259006/b259006.txt">Table of n, a(n) for n = 1..2450</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 68] for n>70

%F k=2: [order 46] for n>60

%F k=3: [order 22] for n>36

%F k=4: a(n) = 2*a(n-1) -a(n-2) +a(n-12) -2*a(n-13) +a(n-14) for n>27

%F k=5: a(n) = a(n-1) +a(n-12) -a(n-13) for n>23

%F k=6: a(n) = a(n-1) +a(n-12) -a(n-13) for n>24

%F k=7: a(n) = a(n-1) +a(n-12) -a(n-13) for n>25

%F Empirical quasipolynomials for column k:

%F k=3: quasipolynomial of degree 2 with period 60 for n>14

%F k=4: polynomial of degree 2 plus a quasipolynomial of degree 0 with period 12 for n>13

%F k=5: polynomial of degree 1 plus a quasipolynomial of degree 0 with period 12 for n>10

%F k=6: polynomial of degree 1 plus a quasipolynomial of degree 0 with period 12 for n>11

%F k=7: polynomial of degree 1 plus a quasipolynomial of degree 0 with period 12 for n>12

%F Empirical for row n:

%F n=1: [linear recurrence of order 68] for n>70

%F n=2: [order 64] for n>82

%e Some solutions for n=3 k=4

%e ..0..1..0..1..1..1....1..1..0..1..0..0....0..0..0..1..0..0....0..1..0..0..1..0

%e ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....1..0..0..0..0..1

%e ..0..1..1..1..1..1....0..0..1..0..1..1....0..0..0..0..1..0....1..1..1..1..1..1

%e ..0..1..0..1..1..0....1..0..1..0..1..0....0..1..1..1..1..0....0..1..0..1..1..0

%e ..0..1..1..1..0..1....1..1..1..1..1..0....1..0..0..1..1..1....0..1..1..1..0..1

%Y Column 1 and row 1 are A256897

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jun 16 2015