login
A259003
Number of (n+2)X(5+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1
113474, 131557, 397152, 402742, 219424, 210946, 35404, 30072, 23070, 28125, 28868, 27162, 31876, 24996, 25262, 23934, 28976, 39602, 26248, 29360, 24542, 29960, 30788, 29082, 33796, 26916, 27182, 25854, 30896, 41522, 28168, 31280, 26462, 31880, 32708
OFFSET
1,1
COMMENTS
Column 5 of A259006
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-12) -a(n-13) for n>23
Empirical for n mod 12 = 0: a(n) = 160*n + 25242 for n>10
Empirical for n mod 12 = 1: a(n) = 160*n + 29796 for n>10
Empirical for n mod 12 = 2: a(n) = 160*n + 22756 for n>10
Empirical for n mod 12 = 3: a(n) = 160*n + 22862 for n>10
Empirical for n mod 12 = 4: a(n) = 160*n + 21374 for n>10
Empirical for n mod 12 = 5: a(n) = 160*n + 26256 for n>10
Empirical for n mod 12 = 6: a(n) = 160*n + 36722 for n>10
Empirical for n mod 12 = 7: a(n) = 160*n + 23208 for n>10
Empirical for n mod 12 = 8: a(n) = 160*n + 26160 for n>10
Empirical for n mod 12 = 9: a(n) = 160*n + 21182 for n>10
Empirical for n mod 12 = 10: a(n) = 160*n + 26440 for n>10
Empirical for n mod 12 = 11: a(n) = 160*n + 27108 for n>10
EXAMPLE
Some solutions for n=2
..1..1..0..1..0..1..0....1..1..0..1..1..1..0....0..0..0..0..1..0..1
..1..0..0..1..0..1..0....0..0..0..0..0..1..0....1..0..0..0..0..1..0
..1..0..1..1..1..1..1....0..1..1..1..1..1..0....0..0..0..1..1..1..0
..1..1..0..0..1..0..1....1..1..0..1..1..0..1....0..1..0..1..1..0..1
CROSSREFS
Sequence in context: A172692 A172648 A259010 * A256901 A066790 A135411
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 16 2015
STATUS
approved