login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X(5+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1

%I #4 Jun 16 2015 10:31:37

%S 113474,131557,397152,402742,219424,210946,35404,30072,23070,28125,

%T 28868,27162,31876,24996,25262,23934,28976,39602,26248,29360,24542,

%U 29960,30788,29082,33796,26916,27182,25854,30896,41522,28168,31280,26462,31880,32708

%N Number of (n+2)X(5+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Column 5 of A259006

%H R. H. Hardin, <a href="/A259003/b259003.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +a(n-12) -a(n-13) for n>23

%F Empirical for n mod 12 = 0: a(n) = 160*n + 25242 for n>10

%F Empirical for n mod 12 = 1: a(n) = 160*n + 29796 for n>10

%F Empirical for n mod 12 = 2: a(n) = 160*n + 22756 for n>10

%F Empirical for n mod 12 = 3: a(n) = 160*n + 22862 for n>10

%F Empirical for n mod 12 = 4: a(n) = 160*n + 21374 for n>10

%F Empirical for n mod 12 = 5: a(n) = 160*n + 26256 for n>10

%F Empirical for n mod 12 = 6: a(n) = 160*n + 36722 for n>10

%F Empirical for n mod 12 = 7: a(n) = 160*n + 23208 for n>10

%F Empirical for n mod 12 = 8: a(n) = 160*n + 26160 for n>10

%F Empirical for n mod 12 = 9: a(n) = 160*n + 21182 for n>10

%F Empirical for n mod 12 = 10: a(n) = 160*n + 26440 for n>10

%F Empirical for n mod 12 = 11: a(n) = 160*n + 27108 for n>10

%e Some solutions for n=2

%e ..1..1..0..1..0..1..0....1..1..0..1..1..1..0....0..0..0..0..1..0..1

%e ..1..0..0..1..0..1..0....0..0..0..0..0..1..0....1..0..0..0..0..1..0

%e ..1..0..1..1..1..1..1....0..1..1..1..1..1..0....0..0..0..1..1..1..0

%e ..1..1..0..0..1..0..1....1..1..0..1..1..0..1....0..1..0..1..1..0..1

%Y Cf. A259006

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 16 2015