%I #4 Jun 16 2015 10:31:37
%S 113474,131557,397152,402742,219424,210946,35404,30072,23070,28125,
%T 28868,27162,31876,24996,25262,23934,28976,39602,26248,29360,24542,
%U 29960,30788,29082,33796,26916,27182,25854,30896,41522,28168,31280,26462,31880,32708
%N Number of (n+2)X(5+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and netosw antidiagonally
%C Column 5 of A259006
%H R. H. Hardin, <a href="/A259003/b259003.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n1) +a(n12) a(n13) for n>23
%F Empirical for n mod 12 = 0: a(n) = 160*n + 25242 for n>10
%F Empirical for n mod 12 = 1: a(n) = 160*n + 29796 for n>10
%F Empirical for n mod 12 = 2: a(n) = 160*n + 22756 for n>10
%F Empirical for n mod 12 = 3: a(n) = 160*n + 22862 for n>10
%F Empirical for n mod 12 = 4: a(n) = 160*n + 21374 for n>10
%F Empirical for n mod 12 = 5: a(n) = 160*n + 26256 for n>10
%F Empirical for n mod 12 = 6: a(n) = 160*n + 36722 for n>10
%F Empirical for n mod 12 = 7: a(n) = 160*n + 23208 for n>10
%F Empirical for n mod 12 = 8: a(n) = 160*n + 26160 for n>10
%F Empirical for n mod 12 = 9: a(n) = 160*n + 21182 for n>10
%F Empirical for n mod 12 = 10: a(n) = 160*n + 26440 for n>10
%F Empirical for n mod 12 = 11: a(n) = 160*n + 27108 for n>10
%e Some solutions for n=2
%e ..1..1..0..1..0..1..0....1..1..0..1..1..1..0....0..0..0..0..1..0..1
%e ..1..0..0..1..0..1..0....0..0..0..0..0..1..0....1..0..0..0..0..1..0
%e ..1..0..1..1..1..1..1....0..1..1..1..1..1..0....0..0..0..1..1..1..0
%e ..1..1..0..0..1..0..1....1..1..0..1..1..0..1....0..1..0..1..1..0..1
%Y Cf. A259006
%K nonn
%O 1,1
%A _R. H. Hardin_, Jun 16 2015
