login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259005
Number of (n+2)X(7+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1
914320, 701282, 2005182, 1284465, 431280, 390714, 73734, 61001, 59336, 60827, 60804, 61979, 62070, 63065, 63258, 63274, 64258, 64949, 65852, 66119, 65838, 67774, 67880, 69079, 69174, 70169, 70362, 70378, 71362, 72053, 72956, 73223, 72942, 74878
OFFSET
1,1
COMMENTS
Column 7 of A259006
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-12) -a(n-13) for n>25
Empirical for n mod 12 = 0: a(n) = 592*n + 54871 for n>12
Empirical for n mod 12 = 1: a(n) = 592*n + 54374 for n>12
Empirical for n mod 12 = 2: a(n) = 592*n + 54777 for n>12
Empirical for n mod 12 = 3: a(n) = 592*n + 54378 for n>12
Empirical for n mod 12 = 4: a(n) = 592*n + 53802 for n>12
Empirical for n mod 12 = 5: a(n) = 592*n + 54194 for n>12
Empirical for n mod 12 = 6: a(n) = 592*n + 54293 for n>12
Empirical for n mod 12 = 7: a(n) = 592*n + 54604 for n>12
Empirical for n mod 12 = 8: a(n) = 592*n + 54279 for n>12
Empirical for n mod 12 = 9: a(n) = 592*n + 53406 for n>12
Empirical for n mod 12 = 10: a(n) = 592*n + 54750 for n>12
Empirical for n mod 12 = 11: a(n) = 592*n + 54264 for n>12
EXAMPLE
Some solutions for n=1
..0..0..0..0..0..1..0..1..1....0..0..0..0..1..0..1..1..1
..0..0..0..0..0..1..0..1..0....1..0..1..0..1..0..0..0..0
..1..1..0..0..1..1..0..0..1....1..1..1..0..1..1..1..1..0
CROSSREFS
Sequence in context: A253998 A258908 A259012 * A256903 A185532 A360907
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 16 2015
STATUS
approved