login
A259004
Number of (n+2)X(6+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1
330684, 317141, 915452, 780329, 321144, 292814, 49717, 42876, 35111, 36146, 36695, 38298, 39684, 36974, 37838, 36576, 39450, 40036, 39480, 40734, 38626, 39770, 40339, 41946, 43332, 40622, 41486, 40224, 43098, 43684, 43128, 44382, 42274, 43418, 43987
OFFSET
1,1
COMMENTS
Column 6 of A259006
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-12) -a(n-13) for n>24
Empirical for n mod 12 = 0: a(n) = 304*n + 34650 for n>11
Empirical for n mod 12 = 1: a(n) = 304*n + 35732 for n>11
Empirical for n mod 12 = 2: a(n) = 304*n + 32718 for n>11
Empirical for n mod 12 = 3: a(n) = 304*n + 33278 for n>11
Empirical for n mod 12 = 4: a(n) = 304*n + 31712 for n>11
Empirical for n mod 12 = 5: a(n) = 304*n + 34282 for n>11
Empirical for n mod 12 = 6: a(n) = 304*n + 34564 for n>11
Empirical for n mod 12 = 7: a(n) = 304*n + 33704 for n>11
Empirical for n mod 12 = 8: a(n) = 304*n + 34654 for n>11
Empirical for n mod 12 = 9: a(n) = 304*n + 32242 for n>11
Empirical for n mod 12 = 10: a(n) = 304*n + 33082 for n>11
Empirical for n mod 12 = 11: a(n) = 304*n + 33347 for n>11
EXAMPLE
Some solutions for n=1
..0..1..1..0..1..0..0..0....0..0..0..0..0..0..1..0....0..0..0..0..0..0..0..1
..1..0..1..1..1..1..1..1....0..0..0..0..1..0..1..0....1..0..0..1..1..1..1..0
..1..0..0..0..0..1..0..1....0..0..1..1..1..0..1..1....0..1..0..1..1..1..1..0
CROSSREFS
Sequence in context: A282229 A236808 A259011 * A256902 A244044 A134359
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 16 2015
STATUS
approved