%I #4 Jun 16 2015 10:32:31
%S 330684,317141,915452,780329,321144,292814,49717,42876,35111,36146,
%T 36695,38298,39684,36974,37838,36576,39450,40036,39480,40734,38626,
%U 39770,40339,41946,43332,40622,41486,40224,43098,43684,43128,44382,42274,43418,43987
%N Number of (n+2)X(6+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and netosw antidiagonally
%C Column 6 of A259006
%H R. H. Hardin, <a href="/A259004/b259004.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n1) +a(n12) a(n13) for n>24
%F Empirical for n mod 12 = 0: a(n) = 304*n + 34650 for n>11
%F Empirical for n mod 12 = 1: a(n) = 304*n + 35732 for n>11
%F Empirical for n mod 12 = 2: a(n) = 304*n + 32718 for n>11
%F Empirical for n mod 12 = 3: a(n) = 304*n + 33278 for n>11
%F Empirical for n mod 12 = 4: a(n) = 304*n + 31712 for n>11
%F Empirical for n mod 12 = 5: a(n) = 304*n + 34282 for n>11
%F Empirical for n mod 12 = 6: a(n) = 304*n + 34564 for n>11
%F Empirical for n mod 12 = 7: a(n) = 304*n + 33704 for n>11
%F Empirical for n mod 12 = 8: a(n) = 304*n + 34654 for n>11
%F Empirical for n mod 12 = 9: a(n) = 304*n + 32242 for n>11
%F Empirical for n mod 12 = 10: a(n) = 304*n + 33082 for n>11
%F Empirical for n mod 12 = 11: a(n) = 304*n + 33347 for n>11
%e Some solutions for n=1
%e ..0..1..1..0..1..0..0..0....0..0..0..0..0..0..1..0....0..0..0..0..0..0..0..1
%e ..1..0..1..1..1..1..1..1....0..0..0..0..1..0..1..0....1..0..0..1..1..1..1..0
%e ..1..0..0..0..0..1..0..1....0..0..1..1..1..0..1..1....0..1..0..1..1..1..1..0
%Y Cf. A259006
%K nonn
%O 1,1
%A _R. H. Hardin_, Jun 16 2015
