login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X(6+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1

%I #4 Jun 16 2015 10:32:31

%S 330684,317141,915452,780329,321144,292814,49717,42876,35111,36146,

%T 36695,38298,39684,36974,37838,36576,39450,40036,39480,40734,38626,

%U 39770,40339,41946,43332,40622,41486,40224,43098,43684,43128,44382,42274,43418,43987

%N Number of (n+2)X(6+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Column 6 of A259006

%H R. H. Hardin, <a href="/A259004/b259004.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +a(n-12) -a(n-13) for n>24

%F Empirical for n mod 12 = 0: a(n) = 304*n + 34650 for n>11

%F Empirical for n mod 12 = 1: a(n) = 304*n + 35732 for n>11

%F Empirical for n mod 12 = 2: a(n) = 304*n + 32718 for n>11

%F Empirical for n mod 12 = 3: a(n) = 304*n + 33278 for n>11

%F Empirical for n mod 12 = 4: a(n) = 304*n + 31712 for n>11

%F Empirical for n mod 12 = 5: a(n) = 304*n + 34282 for n>11

%F Empirical for n mod 12 = 6: a(n) = 304*n + 34564 for n>11

%F Empirical for n mod 12 = 7: a(n) = 304*n + 33704 for n>11

%F Empirical for n mod 12 = 8: a(n) = 304*n + 34654 for n>11

%F Empirical for n mod 12 = 9: a(n) = 304*n + 32242 for n>11

%F Empirical for n mod 12 = 10: a(n) = 304*n + 33082 for n>11

%F Empirical for n mod 12 = 11: a(n) = 304*n + 33347 for n>11

%e Some solutions for n=1

%e ..0..1..1..0..1..0..0..0....0..0..0..0..0..0..1..0....0..0..0..0..0..0..0..1

%e ..1..0..1..1..1..1..1..1....0..0..0..0..1..0..1..0....1..0..0..1..1..1..1..0

%e ..1..0..0..0..0..1..0..1....0..0..1..1..1..0..1..1....0..1..0..1..1..1..1..0

%Y Cf. A259006

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 16 2015