login
A259002
Number of (n+2)X(4+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1
34698, 50654, 159480, 225215, 177118, 174655, 49839, 44035, 31798, 31346, 33359, 29874, 33443, 30974, 36017, 28870, 34352, 39506, 30399, 36536, 31808, 32858, 35797, 32346, 35933, 33482, 38527, 31382, 36866, 42022, 32917, 39056, 34330, 35382, 38323
OFFSET
1,1
COMMENTS
Column 4 of A259006
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -a(n-2) +a(n-12) -2*a(n-13) +a(n-14) for n>27
Empirical for n mod 12 = 0: a(n) = (1/12)*n^2 + (617/3)*n + 27362 for n>13
Empirical for n mod 12 = 1: a(n) = (1/12)*n^2 + (617/3)*n + (122957/4) for n>13
Empirical for n mod 12 = 2: a(n) = (1/12)*n^2 + (617/3)*n + (84235/3) for n>13
Empirical for n mod 12 = 3: a(n) = (1/12)*n^2 + (617/3)*n + (131653/4) for n>13
Empirical for n mod 12 = 4: a(n) = (1/12)*n^2 + (617/3)*n + 25558 for n>13
Empirical for n mod 12 = 5: a(n) = (1/12)*n^2 + (617/3)*n + (369979/12) for n>13
Empirical for n mod 12 = 6: a(n) = (1/12)*n^2 + (617/3)*n + 35777 for n>13
Empirical for n mod 12 = 7: a(n) = (1/12)*n^2 + (617/3)*n + (105845/4) for n>13
Empirical for n mod 12 = 8: a(n) = (1/12)*n^2 + (617/3)*n + (97168/3) for n>13
Empirical for n mod 12 = 9: a(n) = (1/12)*n^2 + (617/3)*n + (109809/4) for n>13
Empirical for n mod 12 = 10: a(n) = (1/12)*n^2 + (617/3)*n + 28293 for n>13
Empirical for n mod 12 = 11: a(n) = (1/12)*n^2 + (617/3)*n + (372271/12) for n>13
EXAMPLE
Some solutions for n=3
..0..1..0..0..0..1....0..0..0..0..0..0....1..0..1..0..0..1....0..0..1..0..0..1
..0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0....1..0..0..0..1..1
..0..0..0..0..1..0....1..1..1..1..1..1....0..1..1..1..1..1....0..0..1..1..1..0
..1..1..1..1..1..1....0..1..0..1..1..0....1..0..0..1..1..0....0..1..1..1..1..1
..1..1..0..1..0..1....0..1..0..1..1..1....1..1..1..1..0..0....0..1..1..1..0..1
CROSSREFS
Sequence in context: A172838 A172681 A251448 * A259009 A256900 A236141
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 16 2015
STATUS
approved