OFFSET
1,1
COMMENTS
Column 4 of A259006
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = 2*a(n-1) -a(n-2) +a(n-12) -2*a(n-13) +a(n-14) for n>27
Empirical for n mod 12 = 0: a(n) = (1/12)*n^2 + (617/3)*n + 27362 for n>13
Empirical for n mod 12 = 1: a(n) = (1/12)*n^2 + (617/3)*n + (122957/4) for n>13
Empirical for n mod 12 = 2: a(n) = (1/12)*n^2 + (617/3)*n + (84235/3) for n>13
Empirical for n mod 12 = 3: a(n) = (1/12)*n^2 + (617/3)*n + (131653/4) for n>13
Empirical for n mod 12 = 4: a(n) = (1/12)*n^2 + (617/3)*n + 25558 for n>13
Empirical for n mod 12 = 5: a(n) = (1/12)*n^2 + (617/3)*n + (369979/12) for n>13
Empirical for n mod 12 = 6: a(n) = (1/12)*n^2 + (617/3)*n + 35777 for n>13
Empirical for n mod 12 = 7: a(n) = (1/12)*n^2 + (617/3)*n + (105845/4) for n>13
Empirical for n mod 12 = 8: a(n) = (1/12)*n^2 + (617/3)*n + (97168/3) for n>13
Empirical for n mod 12 = 9: a(n) = (1/12)*n^2 + (617/3)*n + (109809/4) for n>13
Empirical for n mod 12 = 10: a(n) = (1/12)*n^2 + (617/3)*n + 28293 for n>13
Empirical for n mod 12 = 11: a(n) = (1/12)*n^2 + (617/3)*n + (372271/12) for n>13
EXAMPLE
Some solutions for n=3
..0..1..0..0..0..1....0..0..0..0..0..0....1..0..1..0..0..1....0..0..1..0..0..1
..0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0....1..0..0..0..1..1
..0..0..0..0..1..0....1..1..1..1..1..1....0..1..1..1..1..1....0..0..1..1..1..0
..1..1..1..1..1..1....0..1..0..1..1..0....1..0..0..1..1..0....0..1..1..1..1..1
..1..1..0..1..0..1....0..1..0..1..1..1....1..1..1..1..0..0....0..1..1..1..0..1
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 16 2015
STATUS
approved