login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355894
Let A354790(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A354790(n); a(1)=0 by convention.
1
0, 1, 10, 100, 1000, 10000, 11, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 1100, 10001, 100000000000, 100010, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000, 10000000000000000000
OFFSET
0,3
COMMENTS
The terms of A354790 are squarefree, so here the exponents e_i are 0 or 1.
This bears the same relation to A354790 as A355893 does to A090252.
LINKS
EXAMPLE
The terms, right-justified, for comparison with A355892 and A355893, are:
1 ...................................0
2 ...................................1
3 ..................................10
4 .................................100
5 ................................1000
6 ...............................10000
7 ..................................11
8 ..............................100000
9 .............................1000000
10 ............................10000000
11 ...........................100000000
12 ..........................1000000000
13 .........................10000000000
14 ................................1100
15 ...............................10001
16 ........................100000000000
17 ..............................100010
18 .......................1000000000000
19 ......................10000000000000
20 .....................100000000000000
21 ....................1000000000000000
22 ...................10000000000000000
23 ..................100000000000000000
24 .................1000000000000000000
...
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 25 2022
STATUS
approved