login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Let A354790(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A354790(n); a(1)=0 by convention.
1

%I #22 Aug 26 2022 02:44:57

%S 0,1,10,100,1000,10000,11,100000,1000000,10000000,100000000,

%T 1000000000,10000000000,1100,10001,100000000000,100010,1000000000000,

%U 10000000000000,100000000000000,1000000000000000,10000000000000000,100000000000000000,1000000000000000000,10000000000000000000

%N Let A354790(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A354790(n); a(1)=0 by convention.

%C The terms of A354790 are squarefree, so here the exponents e_i are 0 or 1.

%C This bears the same relation to A354790 as A355893 does to A090252.

%H Michael De Vlieger, <a href="/A355894/b355894.txt">Table of n, a(n) for n = 0..1051</a>

%e The terms, right-justified, for comparison with A355892 and A355893, are:

%e 1 ...................................0

%e 2 ...................................1

%e 3 ..................................10

%e 4 .................................100

%e 5 ................................1000

%e 6 ...............................10000

%e 7 ..................................11

%e 8 ..............................100000

%e 9 .............................1000000

%e 10 ............................10000000

%e 11 ...........................100000000

%e 12 ..........................1000000000

%e 13 .........................10000000000

%e 14 ................................1100

%e 15 ...............................10001

%e 16 ........................100000000000

%e 17 ..............................100010

%e 18 .......................1000000000000

%e 19 ......................10000000000000

%e 20 .....................100000000000000

%e 21 ....................1000000000000000

%e 22 ...................10000000000000000

%e 23 ..................100000000000000000

%e 24 .................1000000000000000000

%e ...

%Y Cf. A090252, A354790, A355893.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Aug 25 2022