Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #22 Aug 26 2022 02:44:57
%S 0,1,10,100,1000,10000,11,100000,1000000,10000000,100000000,
%T 1000000000,10000000000,1100,10001,100000000000,100010,1000000000000,
%U 10000000000000,100000000000000,1000000000000000,10000000000000000,100000000000000000,1000000000000000000,10000000000000000000
%N Let A354790(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A354790(n); a(1)=0 by convention.
%C The terms of A354790 are squarefree, so here the exponents e_i are 0 or 1.
%C This bears the same relation to A354790 as A355893 does to A090252.
%H Michael De Vlieger, <a href="/A355894/b355894.txt">Table of n, a(n) for n = 0..1051</a>
%e The terms, right-justified, for comparison with A355892 and A355893, are:
%e 1 ...................................0
%e 2 ...................................1
%e 3 ..................................10
%e 4 .................................100
%e 5 ................................1000
%e 6 ...............................10000
%e 7 ..................................11
%e 8 ..............................100000
%e 9 .............................1000000
%e 10 ............................10000000
%e 11 ...........................100000000
%e 12 ..........................1000000000
%e 13 .........................10000000000
%e 14 ................................1100
%e 15 ...............................10001
%e 16 ........................100000000000
%e 17 ..............................100010
%e 18 .......................1000000000000
%e 19 ......................10000000000000
%e 20 .....................100000000000000
%e 21 ....................1000000000000000
%e 22 ...................10000000000000000
%e 23 ..................100000000000000000
%e 24 .................1000000000000000000
%e ...
%Y Cf. A090252, A354790, A355893.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Aug 25 2022