login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052969
Expansion of (1-x)/(1-x-2x^2+x^4).
1
1, 0, 2, 2, 5, 9, 17, 33, 62, 119, 226, 431, 821, 1564, 2980, 5677, 10816, 20606, 39258, 74793, 142493, 271473, 517201, 985354, 1877263, 3576498, 6813823, 12981465, 24731848, 47118280, 89768153, 171023248, 325827706, 620755922, 1182643181
OFFSET
0,3
FORMULA
G.f.: -(-1+x)/(1-2*x^2+x^4-x).
Recurrence: {a(0)=1, a(1)=0, a(2)=2, a(3)=2, a(n)-2*a(n+2)-a(n+3)+a(n+4)=0}.
Sum_(1/283*(29*_alpha+28*_alpha^3-76*_alpha^2+55)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z^2+_Z^4-_Z)).
a(n)+a(n-1) = A052535(n). - R. J. Mathar, Nov 28 2011
MAPLE
spec := [S, {S=Sequence(Prod(Union(Prod(Union(Sequence(Z), Z), Z), Z), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x)/(1-x-2x^2+x^4), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 2, 0, -1}, {1, 0, 2, 2}, 40] (* Harvey P. Dale, Oct 20 2017 *)
CROSSREFS
Cf. A052535.
Sequence in context: A212812 A214727 A302483 * A002990 A060405 A326493
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved