login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052968
a(n) = 1 + 2^(n-1) + n for n > 0, a(0) = 2.
8
2, 3, 5, 8, 13, 22, 39, 72, 137, 266, 523, 1036, 2061, 4110, 8207, 16400, 32785, 65554, 131091, 262164, 524309, 1048598, 2097175, 4194328, 8388633, 16777242, 33554459, 67108892, 134217757, 268435486, 536870943, 1073741856, 2147483681
OFFSET
0,1
COMMENTS
O. M. Cain proves that the number of consecutive zeros in the decimal expansion of 5^(n+2^n+2), that is 5^a(n+1), is nondecreasing and grows to infinity as m gets bigger. See link. - Michel Marcus, Nov 07 2019
LINKS
O. M. Cain, The Exceptional Selfcondensability of Powers of Five, arXiv:1910.13829 [math.HO], 2019. See Theorem 10.4. p. 13.
FORMULA
G.f.: (-2 + 5*x - 3*x^2 + x^3)/(-1+2*x)/(-1+x)^2
Recurrence: {a(3)=8, a(2)=5, a(1)=3, a(0)=2, 2*a(n)-a(n+1)-n=0}.
MAPLE
spec := [S, {S=Union(Sequence(Prod(Sequence(Z), Z)), Prod(Sequence(Z), Sequence(Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(-2+5*x-3*x^2+x^3)/(-1+2*x)/(-1+x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 22 2012 *)
Join[{2}, Table[1+2^(n-1)+n, {n, 40}]] (* or *) LinearRecurrence[{4, -5, 2}, {2, 3, 5, 8}, 40] (* Harvey P. Dale, Feb 10 2018 *)
PROG
(Magma) I:=[2, 3, 5, 8]; [n le 4 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
CROSSREFS
Sequence in context: A325473 A213710 A288382 * A206720 A018067 A068202
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved