login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x)/(1-x-2x^2+x^4).
1

%I #19 Jan 27 2022 23:02:23

%S 1,0,2,2,5,9,17,33,62,119,226,431,821,1564,2980,5677,10816,20606,

%T 39258,74793,142493,271473,517201,985354,1877263,3576498,6813823,

%U 12981465,24731848,47118280,89768153,171023248,325827706,620755922,1182643181

%N Expansion of (1-x)/(1-x-2x^2+x^4).

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1041">Encyclopedia of Combinatorial Structures 1041</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,0,-1).

%F G.f.: -(-1+x)/(1-2*x^2+x^4-x).

%F Recurrence: {a(0)=1, a(1)=0, a(2)=2, a(3)=2, a(n)-2*a(n+2)-a(n+3)+a(n+4)=0}.

%F Sum_(1/283*(29*_alpha+28*_alpha^3-76*_alpha^2+55)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z^2+_Z^4-_Z)).

%F a(n)+a(n-1) = A052535(n). - _R. J. Mathar_, Nov 28 2011

%p spec := [S,{S=Sequence(Prod(Union(Prod(Union(Sequence(Z),Z),Z),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);

%t CoefficientList[Series[(1-x)/(1-x-2x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{1,2,0,-1},{1,0,2,2},40] (* _Harvey P. Dale_, Oct 20 2017 *)

%Y Cf. A052535.

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _James A. Sellers_, Jun 05 2000