login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052972
Expansion of (1-x^3)/(1-x-x^2-x^3+x^5).
0
1, 1, 2, 3, 6, 10, 18, 32, 57, 101, 180, 320, 569, 1012, 1800, 3201, 5693, 10125, 18007, 32025, 56956, 101295, 180151, 320395, 569816, 1013406, 1802322, 3205393, 5700726, 10138625, 18031338, 32068367, 57032937, 101431916, 180394595
OFFSET
0,3
FORMULA
G.f.: -(-1+x^3)/(1-x^3-x-x^2+x^5)
Recurrence: {a(1)=1, a(0)=1, a(3)=3, a(2)=2, a(4)=6, a(n)-a(n+2)-a(n+3)-a(n+4)+a(n+5)=0}
Sum(-1/7031*(-1007-901*_alpha^2-1879*_alpha+1187*_alpha^4-95*_alpha^3)*_alpha^(-1-n), _alpha=RootOf(1-_Z^3-_Z-_Z^2+_Z^5))
MAPLE
spec := [S, {S=Sequence(Prod(Union(Sequence(Prod(Z, Z, Z)), Z), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x^3)/(1-x-x^2-x^3+x^5), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 1, 1, 0, -1}, {1, 1, 2, 3, 6}, 50] (* Harvey P. Dale, Sep 18 2016 *)
CROSSREFS
Sequence in context: A357451 A224342 A181649 * A018166 A144026 A054152
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved