OFFSET
0,3
COMMENTS
Eigensequence for sequence array of A010060(n+1). - Paul Barry, Nov 03 2010
Starting with offset 1 represents the numbers of ordered compositions of n using the odious numbers: (1, 2, 4, 7, 8, 11, ...). Cf. A000069. - Gary W. Adamson, Apr 04 2013
FORMULA
G.f.: 1/(1-(1/2)*(1/(1-x) - (Product_{k>=0} (1-x^(2^k))))). - Paul Barry, Nov 03 2010
a(n) = Sum_{k=0..n-1} A010060(n-k)*a(k) with a(0) = 1. - Johannes W. Meijer, Jun 19 2012
EXAMPLE
MAPLE
A010060:=proc(n) local n2: n2:=convert(n, base, 2): sum(n2[j], j=1..nops(n2)) mod 2; end: a:=proc(n) option remember: if n=0 then 1 else a(n) := add(A010060(n-k)*a(k), k=0..n-1) fi: end: seq(a(n), n=0..34); # Johannes W. Meijer, Jun 19 2012
PROG
(PARI) a(n)=polcoeff(1/(1-sum(i=1, n, (hammingweight(i)%2)*x^i)+O(x^(n+1))), n) \\ Ralf Stephan, Dec 10 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 07 2008
EXTENSIONS
Edited by Johannes W. Meijer, Jun 19 2012
STATUS
approved