

A144027


Eigentriangle by rows, T(n,k) = A010060(nk+1)*A144026(k1), 1<=k<=n.


1



1, 1, 1, 0, 1, 2, 1, 0, 2, 3, 0, 1, 0, 3, 6, 0, 0, 2, 0, 6, 10, 1, 0, 0, 3, 0, 10, 18, 1, 1, 0, 0, 6, 0, 18, 32, 0, 1, 2, 0, 0, 10, 0, 32, 58, 0, 0, 2, 3, 0, 0, 18, 0, 58, 103, 1, 0, 0, 3, 6, 0, 0, 32, 0, 103, 184, 0, 1, 0, 0, 6, 10, 0, 0, 58, 0, 184, 329, 1, 0, 2, 0, 0, 10, 18, 0, 0, 103, 329, 588
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

Left column = the ThueMorse sequence A010060 starting with offset 1.
Right border = A144026: (1, 1, 2, 3, 6, 10, 18,...).
Row sums = A144026: (1, 2, 3, 6, 10, 18,...).
Sum of nth row terms = rightmost term of next row.


LINKS

Table of n, a(n) for n=1..90.


FORMULA

Eigentriangle by rows, T(n,k) = A010060(nk+1)*A144026(k1), 1<=k<=n.
The triangle is generated from the ThueMorse sequence A010060 using offset 1:
(1, 1, 0, 1, 0, 0, 1,...). A144026 is (1, 1, 2, 3, 6, 10, 18,...).


EXAMPLE

The first few rows of the triangle =
1;
1, 1;
0, 1, 2;
1, 0, 2, 3;
0, 1, 0, 3, 6;
0, 0, 2, 0, 6, 10;
1, 0, 0, 3, 0, 10, 18;
1, 1, 0, 0, 6, 0, 18, 32;
0, 1, 2, 0, 0, 10, 0, 32, 58;
0, 0, 2, 3, 0, 0, 18, 0, 58, 103;
1, 0, 0, 3, 6, 0, 0, 32, 0, 103, 184;
...
Row 4 = (1, 0, 2, 3) = termwise products of (1, 0, 1, 1) and (1, 1, 2, 3), where (1, 0, 1, 1) = the first 4 terms of A010060, reversed with offset 1.
(1, 1, 2, 3) = first 4 terms of A144026: (1, 1, 2, 3, 6, 10, 18,...).


CROSSREFS

Cf. A010060, A144026
Sequence in context: A161515 A145580 A144219 * A019591 A341237 A091967
Adjacent sequences: A144024 A144025 A144026 * A144028 A144029 A144030


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Sep 07 2008


STATUS

approved



