login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181649
An INVERT sequence for A010054.
2
1, 1, 2, 3, 6, 10, 18, 32, 57, 101, 179, 319, 566, 1006, 1786, 3174, 5638, 10016, 17793, 31609, 56153, 99753, 177211, 314810, 559255, 993501, 1764935, 3135366, 5569909, 9894819, 17577926, 31226796, 55473705, 98547807, 175067983, 311004383
OFFSET
0,3
COMMENTS
Eigensequence of the sequence array for A010054.
LINKS
FORMULA
G.f.: 1/(1-x*Product{k>0,(1 - x^(2k))/(1-x^(2k-1))}).
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x^1 / (1 - x / (1 + x / (1 + x^2 / (1 - x / (1 + x / (1 + x^3 / (1 - x / (1 + x / ...)))))))))))). - Michael Somos, Jan 03 2013
a(n) ~ c / r^n, where r = 0.5629116358141452127351993944163442032777187438473224785071475357915... is the root of the equation (-1 + x)*QPochhammer(x^2, x^2) = QPochhammer(1/x, x^2) and c = 0.5730261147067572839709085685318242468812339379480160560847761872213851... - Vaclav Kotesovec, Jan 23 2024
EXAMPLE
1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 18*x^6 + 32*x^7 + 57*x^8 + 101*x^9 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[1/(1 - q^(7/8)*eta[q^2]^2/eta[q]), {q, 0, 50}], q] (* G. C. Greubel, Sep 16 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (1 - x * eta(x^2 + A)^2 / eta(x + A)), n))} /* Michael Somos, Jan 03 2013 */
CROSSREFS
Sequence in context: A018073 A357451 A224342 * A052972 A018166 A144026
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 03 2010
STATUS
approved