login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293507
Expansion of e.g.f. exp(x/(1 - x^4)).
7
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 378001, 5473441, 39972241, 199679041, 7005552841, 176899522801, 2186722497961, 17454339826561, 459473703430561, 16503993702423361, 306140370496394401, 3555223271216311681, 80917223353652470681, 3568770455830785208081
OFFSET
0,6
FORMULA
E.g.f.: Product_{k>0} exp(x^(4*k-3)).
a(n) ~ exp(1/4 + sqrt(n) - n) * n^(n-1/4) / 2. - Vaclav Kotesovec, Oct 11 2017
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-1,4*k) * (4*k+1)! * a(n-4*k-1). - Ilya Gutkovskiy, Feb 24 2022
a(n) = n! * Sum_{k=0..floor(n/4)} binomial(n-3*k-1,k)/(n-4*k)!. - Seiichi Manyama, Jun 08 2024
MATHEMATICA
CoefficientList[Series[E^(x/(1 - x^4)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 11 2017 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(x/(1-x^4))))
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, exp(x^(4*k-3)))))
CROSSREFS
E.g.f.: exp(x/(1 - x^m)): A000262 (m=1), A088009 (m=2), A293493 (m=3), this sequence (m=4).
Cf. A293526.
Sequence in context: A354554 A367720 A293566 * A356630 A306452 A238250
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 10 2017
STATUS
approved