OFFSET
2,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..1276
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
V. Pilaud, J. Rue, Analytic combinatorics of chord and hyperchord diagrams with k crossings, Adv. Appl. Math. 57 (2014) 60-100, equation (3).
FORMULA
T(n, k) = binomial(n+k-2, k)*binomial(3*n-3, n-2-k)/(n-1), 0 <= k <= n-2.
G.f.: G(t, z) satisfies G^3 + t*G^2 - (1+2*t)*z*G+(1+t)*z^2 = 0.
O.g.f. equals the series reversion w.r.t. x of x*(1-x*t)/(1+x)^3. If R(n,t) is the n-th row polynomial of this triangle then R(n,t-1) is the n-th row polynomial of A108410. - Peter Bala, Jul 15 2012
EXAMPLE
T(4,1)=9 because, considering the complete graph K_4 on the nodes A,B,C and D, we obtain a non-crossing connected graph on A,B,C,D, with exactly one interior face, by deleting either both diagonals AC and BD (1 case) or deleting one of the two diagonals and one of the four sides (8 cases).
Triangle starts:
1;
3, 1;
12, 9, 2;
55, 66, 30, 5;
... - Michel Marcus, Apr 09 2013
MATHEMATICA
t[n_, k_] = Binomial[n + k - 2, k] Binomial[3 n - 3, n - 2 - k]/(n - 1) ; Flatten[Table[t[n, k], {n, 2, 10}, {k, 0, n - 2}]][[;; 43]]
(* Jean-François Alcover, Jun 30 2011 *)
PROG
(PARI)
T(n, k)={binomial(n+k-2, k)*binomial(3*n-3, n-2-k)/(n-1)}
for(n=2, 10, for(k=0, n-2, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 28 2003
EXTENSIONS
Keyword tabl added by Michel Marcus, Apr 09 2013
Offset corrected by Andrew Howroyd, Nov 17 2017
STATUS
approved