login
A089434
Triangle read by rows: T(n,k) (n >= 2, k >= 0) is the number of non-crossing connected graphs on n nodes on a circle, having k interior faces. Rows are indexed 2,3,4,...; columns are indexed 0,1,2,....
8
1, 3, 1, 12, 9, 2, 55, 66, 30, 5, 273, 455, 315, 105, 14, 1428, 3060, 2856, 1428, 378, 42, 7752, 20349, 23940, 15960, 6300, 1386, 132, 43263, 134596, 191268, 159390, 83490, 27324, 5148, 429, 246675, 888030, 1480050, 1480050, 965250, 418275, 117117
OFFSET
2,2
LINKS
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
V. Pilaud, J. Rue, Analytic combinatorics of chord and hyperchord diagrams with k crossings, Adv. Appl. Math. 57 (2014) 60-100, equation (3).
FORMULA
T(n, k) = binomial(n+k-2, k)*binomial(3*n-3, n-2-k)/(n-1), 0 <= k <= n-2.
G.f.: G(t, z) satisfies G^3 + t*G^2 - (1+2*t)*z*G+(1+t)*z^2 = 0.
O.g.f. equals the series reversion w.r.t. x of x*(1-x*t)/(1+x)^3. If R(n,t) is the n-th row polynomial of this triangle then R(n,t-1) is the n-th row polynomial of A108410. - Peter Bala, Jul 15 2012
EXAMPLE
T(4,1)=9 because, considering the complete graph K_4 on the nodes A,B,C and D, we obtain a non-crossing connected graph on A,B,C,D, with exactly one interior face, by deleting either both diagonals AC and BD (1 case) or deleting one of the two diagonals and one of the four sides (8 cases).
Triangle starts:
1;
3, 1;
12, 9, 2;
55, 66, 30, 5;
... - Michel Marcus, Apr 09 2013
MATHEMATICA
t[n_, k_] = Binomial[n + k - 2, k] Binomial[3 n - 3, n - 2 - k]/(n - 1) ; Flatten[Table[t[n, k], {n, 2, 10}, {k, 0, n - 2}]][[;; 43]]
(* Jean-François Alcover, Jun 30 2011 *)
PROG
(PARI)
T(n, k)={binomial(n+k-2, k)*binomial(3*n-3, n-2-k)/(n-1)}
for(n=2, 10, for(k=0, n-2, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017
CROSSREFS
T(n, n-2) yields the Catalan numbers (A000108) corresponding to triangulations, T(n, 0) yields the ternary numbers (A001764) corresponding to noncrossing trees, T(n, 1) yields A003408, row sums yield A007297. Sum(kT(n, k), k=0..n-2) yields A045742.
Columns k=0..2 are A001764, A003408, A089433.
Sequence in context: A039811 A046089 A113360 * A268298 A291418 A219512
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 28 2003
EXTENSIONS
Keyword tabl added by Michel Marcus, Apr 09 2013
Offset corrected by Andrew Howroyd, Nov 17 2017
STATUS
approved