Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3594 #140 Oct 29 2023 21:51:20
%S 1,1,4,23,156,1162,9192,75819,644908,5616182,49826712,448771622,
%T 4092553752,37714212564,350658882768,3285490743987,30989950019532,
%U 294031964658430,2804331954047160,26870823304476690,258548658860327880
%N Number of connected graphs on n labeled nodes on a circle with straight-line edges that don't cross.
%C Apart from the initial 1, reversion of g.f. for A162395 (squares with signs): see A263843.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H N. J. A. Sloane, <a href="/A007297/b007297.txt">Table of n, a(n) for n = 1..999</a> (first 101 terms from T. D. Noe)
%H M. Aguiar and J.-L. Loday, <a href="http://dx.doi.org/10.1016/j.jpaa.2004.01.002">Quadri-algebras</a>, J. Pure Appl. Algebra, 191 (2004), 205-221.
%H R. Bacher, <a href="http://arxiv.org/abs/math/0409050">On generating series of complementary plane trees</a> arXiv:math/0409050 [math.CO], 2004.
%H P. Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Barry1/barry202.html">Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays</a>, Journal of Integer Sequences, 2012, article 12.4.2. - From _N. J. A. Sloane_, Sep 21 2012
%H F. R. Bernhart & N. J. A. Sloane, <a href="/A006343/a006343.pdf">Emails, April-May 1994</a>
%H F. Cazals, <a href="http://algo.inria.fr/libraries/autocomb/NCC-html/NCC.html">Combinatorics of Non-Crossing Configurations</a>, Studies in Automatic Combinatorics, Volume II (1997).
%H E. Deutsch and B. E. Sagan, <a href="https://arxiv.org/abs/math/0407326">Congruences for Catalan and Motzkin numbers and related sequences</a>, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
%H C. Domb and A. J. Barrett, <a href="http://dx.doi.org/10.1016/0012-365X(74)90081-8">Enumeration of ladder graphs</a>, Discrete Math. 9 (1974), 341-358 (column sums in Table 2).
%H Michael Drmota, Anna de Mier, Marc Noy, <a href="http://www.dmg.tuwien.ac.at/drmota/noncrossingFinal4.pdf">Extremal statistics on non-crossing configurations</a>, Discrete Math. 327 (2014), 103--117. MR3192420. See Eq. (3). - N. J. A. Sloane, May 18 2014
%H Guillermo Esteban, Clemens Huemer, Rodrigo I. Silveira, <a href="https://arxiv.org/abs/2003.00524">New production matrices for geometric graphs</a>, arXiv:2003.00524 [math.CO], 2020.
%H Sen-Peng Eu, Shu-Chung Liu and Yeong-Nan Yeh, <a href="http://dx.doi.org/10.1111/j.1467-9590.2006.00337.x">On the congruences of some combinatorial numbers</a>, Stud. Appl. Math. vol. 116 (2006) pp. 135-144.
%H P. Flajolet and M. Noy, <a href="http://algo.inria.fr/flajolet/Publications">Analytic Combinatorics of Non-crossing Configurations</a>
%H P. Flajolet and M. Noy, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00372-0">Analytic combinatorics of non-crossing configurations</a>, Discrete Math., 204, 203-229, 1999.
%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 486.
%H Loïc Foissy, <a href="http://arxiv.org/abs/1504.06056">Free quadri-algebras and dual quadri-algebras</a>, arXiv:1504.06056 [math.CO], 2015.
%H I. M. Gessel, <a href="http://arxiv.org/abs/1403.7656">A short proof of the Deutsch-Sagan congruence for connected non crossing graphs</a>, arXiv preprint arXiv:1403.7656 [math.CO], 2014.
%H Marco Kuhlmann, <a href="http://arxiv.org/abs/1504.04993">Tabulation of Noncrossing Acyclic Digraphs</a>, arXiv:1504.04993 [cs.DS], 2015.
%H M. Kuhlmann, P. Jonsson, <a href="https://doi.org/10.1162/tacl_a_00158">Parsing to Noncrossing Dependency Graphs</a>, Transactions of the Association for Computational Linguistics, vol. 3, pp. 559-570, 2015.
%H Sara Madariaga, <a href="http://arxiv.org/abs/1304.5184">Gröbner-Shirshov bases for the non-symmetric operads of dendriform algebras and quadri-algebras</a>, arXiv:1304.5184 [math.RA], 2013.
%H B. Vallette, <a href="http://arxiv.org/abs/math/0609002">Manin products, Koszul duality, Loday algebras and Deligne conjecture</a>, arXiv:math/0609002 [math.QA], 2006-2007; J. Reine Angew. Math. 620 (2008), 105-164.
%H Gus Wiseman, <a href="/A007297/a007297.png">The a(5) = 156 connected non-crossing graphs</a>.
%H Gus Wiseman, <a href="/A007297/a007297.txt">Constructive Mathematica program for A007297</a>.
%H Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, <a href="https://arxiv.org/abs/1706.03357">Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing</a>, arXiv:1706.03357 [cs.CL], 2017.
%H <a href="/index/Res#revert">Index entries for reversions of series</a>
%F Apart from initial term, g.f. is the series reversion of (x-x^2)/(1+x)^3 (A162395). See A263843. - _Vladimir Kruchinin_, Feb 08 2013
%F G.f.: (g-z)/z, where g=-1/3+(2/3)*sqrt(1+9z)*sin((1/3)*arcsin((2+27z+54z^2)/2/(1+9*z)^(3/2))). - _Emeric Deutsch_, Dec 02 2002
%F a(n) = (1/n)*Sum_{k=0..n} binomial(3n, n-k-1)*binomial(n+k-1, k). - _Paul Barry_, May 11 2005
%F a(n) = 4^(n-1)*(Gamma(3*n/2-1)/Gamma(n/2+1)/Gamma(n) -Gamma((3*n-1)/2)/ Gamma( (n+1)/2)/Gamma(n+1)). - _Mark van Hoeij_, Aug 27 2005, adapted to offset Feb 21 2020 by _R. J. Mathar_
%F a(n) = 4^n * binomial(3*n/2, n/2) / (9*n-6) - 4^(n-1) * binomial(3*(n-1)/2, (n-1)/2 ) / n. - _Mark van Hoeij_, Aug 27 2005, adapted to offset Feb 21 2020 by _R. J. Mathar_
%F D-finite with recurrence: n*(n-1)*(3*n-4)*a(n) +36*(n-1)*a(n-1) -12*(3*n-8)*(3*n-1)*(3*n-7)*a(n-2)=0. - _Mark van Hoeij_, Aug 27 2005, adapted to offset Feb 21 2020 by _R. J. Mathar_
%F a(n) = (1/n)*Sum_{k=0..n} C(3n, k)*C(2n-k-2, n-1). - _Paul Barry_, Sep 27 2005
%F a(n) ~ (2-sqrt(3)) * 6^n * 3^(n/2) / (sqrt(2*Pi) * n^(3/2)). - _Vaclav Kotesovec_, Mar 17 2014
%F a(n) = binomial(3*n,2*n+1)*hypergeom([1-n,n], [2*n+2], -1)/n. - _Vladimir Reshetnikov_, Oct 25 2015
%F a(n) = 2*A078531(n) - A085614(n+1). - _Vladimir Reshetnikov_, Apr 24 2016
%e G.f. = x*(1 + x + 4*x^2 + 23*x^3 + 156*x^4 + 1162*x^5 + 9192*x^6 + 75819*x^7 + ...).
%p A007297:=proc(n) if n = 1 then 1 else add(binomial(3*n - 3, n + j)*binomial(j - 1, j - n + 1), j = n - 1 .. 2*n - 3)/(n - 1); fi; end;
%t CoefficientList[ InverseSeries[ Series[(x-x^2)/(1+x)^3, {x, 0, 20}], x], x] // Rest (* From _Jean-François Alcover_, May 19 2011, after PARI prog. *)
%t Table[Binomial[3n, 2n+1] Hypergeometric2F1[1-n, n, 2n+2, -1]/n, {n, 1, 20}] (* _Vladimir Reshetnikov_, Oct 25 2015 *)
%o (PARI) a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x)^3+O(x^(n+2))),n+1)) /* _Ralf Stephan_ */
%Y Cf. A162395, A000290. 4th row of A107111. Row sums of A089434.
%Y See A263843 for a variant.
%Y Cf. A000108 (non-crossing set partitions), A001006, A001187, A054726 (non-crossing graphs), A054921, A099947, A194560, A293510, A323818, A324167, A324169, A324173.
%K nonn,easy,nice
%O 1,3
%A _N. J. A. Sloane_, _Mira Bernstein_
%E Better description from _Philippe Flajolet_, Apr 20 2000
%E More terms from _James A. Sellers_, Aug 21 2000
%E Definition revised and initial a(1)=1 added by _N. J. A. Sloane_, Nov 05 2015 at the suggestion of _Axel Boldt_. Some of the formulas may now need to be adjusted slightly.