
REFERENCES

V. Alvarez, J. A. Armario, M. D. Frau and F. Gudlel, The maximal determinant of cocyclic (1, 1)matrices over D_{2t}, Linear Algebra and its Applications, 2011, in press; doi:10.1016/j.laa.2011.05.018
F. J. Aragon Artacho, J. M. Borwein, M. K. Tam, DouglasRachford Feasibility Methods for Matrix Completion Problems, 2013; http://www.carma.newcastle.edu.au/~jb616/DR_MatrixCompletion.pdf
J. Hadamard, Résolution d'une question relative aux déterminants, Bull. des Sciences Math. 2 (1893), 240246.
H. Kharaghani and B. TayfehRezaie, On the classification of Hadamard matrices of order 32, J. Combin. Des., 18 (2010), 328336.
H. Kharaghani and B. TayfehRezaie, Hadamard matrices of order 32, math.ipm.ac.ir/tayfehr/papersandpreprints/H32typetwo.pdf
Kimura, H., (1986), Hadamard matrices of order 28 with automorphism groups of order two, J. Combin. Theory, A 43, 98102.
Kimura, H., (1989), New Hadamard matrix of order 24, Graphs Combin., 5, 235242.
Kimura, H., (1994), Classification of Hadamard matrices of order 28 with Hall sets, Discrete Math., 128, 257268.
Kimura, H., (1994), Classification of Hadamard matrices of order 28, Discrete Math., 133, 171180.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Spence, Edward; Classification of Hadamard matrices of order 24 and 28. Discrete Math. 140 (1995), no. 13, 185243.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1073, 2002.
