The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109254 New factors appearing in the factorization of 7^k - 2^k as k increases. 1
 5, 3, 67, 53, 11, 61, 13, 164683, 2417, 163, 739, 1871, 199, 1987261, 2221, 1301, 14894543, 71, 1289, 31, 136261, 17, 339121, 137, 443, 766606297, 19, 2017, 2279779036969771, 5329741, 43, 235448977, 23, 9552313, 47, 116462754638606501, 337, 16993, 101, 158305897173001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Zsigmondy numbers for a = 7, b = 2: Zs(n, 7, 2) is the greatest divisor of 7^k - 2^k that is relatively prime to 7^j - 2^j for all positive integers j < k. LINKS Eric Weisstein's World of Mathematics, Zsigmondy's Theorem EXAMPLE a(1) = 5 because 7^1 - 2^1 = 5. a(2) = 3 because, although 7^2 - 2^2 = 45 = 3^2 * 5 has prime factor 5, that has already appeared in this sequence, but the repeated prime factor of 3 is new. a(3) = 67 because, although 7^3 - 2^3 = 335 = 5 * 67 has prime factor 5, that has already appeared in this sequence, but the prime factor of 67 is new. a(4) = 53 because, although 7^4 - 2^4 = 2385 = 3^2 * 5 * 53, the prime factors of 3 and 5 have already appeared in this sequence, but the prime factor of 53 is new. a(5) = 11 and a(6) = 61 because, although 7^5 - 2^5 = 16775 = 5^2 * 11 * 61, the prime factor of 5 has already appeared in this sequence, but the prime factors of 11 and 61 are new. PROG (PARI) lista(nn) = {my(pf = []); for (k=1, nn, f = factor(7^k-2^k)[, 1]; for (j=1, #f~, if (!vecsearch(pf, f[j]), print1(f[j], ", "); pf = vecsort(concat(pf, f[j]))); ); ); } \\ Michel Marcus, Nov 13 2016 CROSSREFS Cf. A109325, A109347, A109348, A109349. Sequence in context: A181755 A007299 A257935 * A258091 A255599 A145985 Adjacent sequences:  A109251 A109252 A109253 * A109255 A109256 A109257 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Aug 25 2005 EXTENSIONS Comment corrected by Jerry Metzger, Nov 04 2009 More terms from Michel Marcus, Nov 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 13:36 EDT 2021. Contains 346306 sequences. (Running on oeis4.)