login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109255
a(n) = (p^2 - 1) / 12, where p is the n-th prime of the form 4*k+1.
1
2, 14, 24, 70, 114, 140, 234, 310, 444, 660, 784, 850, 990, 1064, 1564, 1850, 2054, 2494, 2730, 3104, 3234, 4370, 4524, 4840, 5504, 6030, 6394, 6580, 7154, 8164, 8374, 9464, 10150, 10384, 11594, 12610, 13134, 13400, 13940, 14770, 15624, 16800, 17404
OFFSET
1,1
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 2, Problem 20.
LINKS
FORMULA
a(n) = (A002144(n)^2 - 1) / 12.
a(n) = Sum_{k=1..(p-1)/4} floor(sqrt(k*p)), where p = primes of the form 4*n+1.
MATHEMATICA
Map[(#^2 - 1)/12 &, Select[4 Range[120] + 1, PrimeQ]] (* Michael De Vlieger, Dec 27 2019 *)
PROG
(Magma) [(p^2 - 1) / 12: p in PrimesUpTo(500)| p mod 4 eq 1]; // Marius A. Burtea, Dec 29 2019
CROSSREFS
Cf. A002144.
Sequence in context: A036433 A172048 A226334 * A285990 A174594 A051222
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 20 2005
STATUS
approved