login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (p^2 - 1) / 12, where p is the n-th prime of the form 4*k+1.
1

%I #14 Sep 08 2022 08:45:19

%S 2,14,24,70,114,140,234,310,444,660,784,850,990,1064,1564,1850,2054,

%T 2494,2730,3104,3234,4370,4524,4840,5504,6030,6394,6580,7154,8164,

%U 8374,9464,10150,10384,11594,12610,13134,13400,13940,14770,15624,16800,17404

%N a(n) = (p^2 - 1) / 12, where p is the n-th prime of the form 4*k+1.

%D G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 2, Problem 20.

%H Michael De Vlieger, <a href="/A109255/b109255.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = (A002144(n)^2 - 1) / 12.

%F a(n) = Sum_{k=1..(p-1)/4} floor(sqrt(k*p)), where p = primes of the form 4*n+1.

%t Map[(#^2 - 1)/12 &, Select[4 Range[120] + 1, PrimeQ]] (* _Michael De Vlieger_, Dec 27 2019 *)

%o (Magma) [(p^2 - 1) / 12: p in PrimesUpTo(500)| p mod 4 eq 1]; // _Marius A. Burtea_, Dec 29 2019

%Y Cf. A002144.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Aug 20 2005