login
A109348
Zsigmondy numbers for a = 7, b = 3: Zs(n, 7, 3) is the greatest divisor of 7^n - 3^n that is relatively prime to 7^m - 3^m for all positive integers m < n.
5
4, 5, 79, 29, 4141, 37, 205339, 1241, 127639, 341, 494287399, 2041, 24221854021, 82573, 3628081, 2885681, 58157596211761, 109117, 2849723505777919, 4871281, 8607961321, 197750389, 6842186811484434379, 5576881, 80962848274370701
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Zsigmondy's Theorem
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Aug 21 2005
EXTENSIONS
Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009
STATUS
approved