login
Zsigmondy numbers for a = 7, b = 3: Zs(n, 7, 3) is the greatest divisor of 7^n - 3^n that is relatively prime to 7^m - 3^m for all positive integers m < n.
5

%I #11 Feb 16 2025 08:32:58

%S 4,5,79,29,4141,37,205339,1241,127639,341,494287399,2041,24221854021,

%T 82573,3628081,2885681,58157596211761,109117,2849723505777919,4871281,

%U 8607961321,197750389,6842186811484434379,5576881,80962848274370701

%N Zsigmondy numbers for a = 7, b = 3: Zs(n, 7, 3) is the greatest divisor of 7^n - 3^n that is relatively prime to 7^m - 3^m for all positive integers m < n.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ZsigmondyTheorem.html">Zsigmondy's Theorem</a>

%Y Cf. A064078-A064083, A109325, A109347, A109349.

%K nonn,changed

%O 1,1

%A _Jonathan Vos Post_, Aug 21 2005

%E Edited, corrected and extended by _Ray Chandler_, Aug 26 2005

%E Definition corrected by _Jerry Metzger_, Nov 04 2009