OFFSET
1,3
COMMENTS
Also the differences between two Fibonacci numbers, because the difference F(i+2) - F(j+1) equals the sum F(j) + ... + F(i). - T. D. Noe, Oct 17 2005; corrected by Patrick Capelle, Mar 01 2008
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
FORMULA
log a(n) >> sqrt(n). - Charles R Greathouse IV, Oct 06 2016
MAPLE
isA007298 := proc(n)
local i, Fi, j, Fj ;
for i from 0 do
Fi := combinat[fibonacci](i) ;
for j from i do
Fj :=combinat[fibonacci](j) ;
if Fj-Fi = n then
return true;
elif Fj-Fi > n then
break;
end if;
end do:
Fj :=combinat[fibonacci](i+1) ;
if Fj-Fi > n then
return false;
end if;
end do:
end proc:
for n from 0 to 100 do
if isA007298(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, May 25 2016
MATHEMATICA
Union[Flatten[Table[Fibonacci[n]-Fibonacci[i], {n, 14}, {i, n}]]] (* T. D. Noe, Oct 17 2005 *)
isA007298[n_] := Module[{i, Fi, j, Fj}, For[i = 0, True, i++, Fi = Fibonacci[i]; For[j = i, True, j++, Fj = Fibonacci[j]; Which[Fj - Fi == n, Return@True, Fj - Fi > n, Break[]]]; Fj := Fibonacci[i + 1]; If[Fj - Fi > n, Return@False]]];
Select[Range[0, 1000], isA007298] (* Jean-François Alcover, Nov 16 2023, after R. J. Mathar *)
PROG
(PARI) A130233(n)=log(sqrt(5)*n+1.5)\log((1+sqrt(5))/2)
list(lim)=my(v=List([0]), F=vector(A130233(lim), i, fibonacci(i)), s, t); for(i=1, #F, s=0; forstep(j=i, 1, -1, s+=F[j]; if(s>lim, break); listput(v, s))); Set(v) \\ Charles R Greathouse IV, Oct 06 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 02 2000
STATUS
approved